
Framework to facilitate development of multithreaded applications 

in ROS2 

 While robotics engineers can describe in great detail complex interactions and processes of 

robots, they struggle to translate these mathematical concepts into software components. This is 

especially challenging when robotics engineers try to harvest computing potential of multi-core 

processors. As a consequence, robotic software is often not optimized for concurrent execution, and 

in many cases, real-time constraints are not met. 

 As a solution to this problem, we suggest to provide an abstraction that will enable robotics 

engineers to specify their intentions regarding concurrency. In order to be able to use these intentions 

and automatically generate software components and set low level properties that enable software 

to take advantage of concurrent hardware, we will create a set of best practices to instruct robotics 

engineers on how to develop their software. This way, robotics engineers will mainly worry about 

defining the components of the robots, whereas, software engineering related decisions are taken by 

the abstraction provided to them. This sort of the abstraction will be gathered into a framework. This 

framework will be implemented on the top of ROBOT OPERATING SYSTEM 2 (referred as ROS from 

here on). ROS is a popular and widely adopted robotics engineering framework. Parameters which will 

define framework are: low latency, resource utilization (CPU and memory), scheduler information, 

allocation of memory on heap, process execution priority and threads execution priority. In order to 

quantify these parameters, we will complement ROS tools that monitor above mentioned information 

and indicate system bottlenecks. 

The main benefit of this work is to enable robotics engineers to develop their robotics 

applications in a more efficient way, without the need to learn underlying complex concepts of 

concurrent software engineering. The focus is on assisted usage of multicore processors and 

concurrency, through automatic and semi-automatic assisted operations. These operations will guide 

robotics engineers and assist them when possible so they can mainly focus on robotic problems and 

less on software engineering problems of concurrency. Besides the obvious benefit coming from the 

concurrent execution of the software, robotics engineers will be spared from learning the 

configuration of scheduling and shared memory. On top of that, generated concurrency configuration 

will be robust and portable as a result of using the framework, robotics engineers will not have the 

overhead of developing the solutions themselves. 

In order to achieve these benefits, it will be necessary to first explore what kind of concurrency 

related operations did ROS already take over from underlying operating system on which it executes, 

and following the established mindset, recognize perspective for the further extension of ROS 

considering concurrency. Then, it will be necessary to identify terms and properties that are of 

importance to robotics engineers through use cases such as inverse kinematics, flight stability, image 

processing and set of parameters such as execution priorities, deadlines and scheduling that are 

characteristic for concurrent execution of software from the perspective of software engineering. All 

research directed towards concurrency, definition of descriptive language and translation of robotics 

engineers needs will be based on top of node abstraction defined by ROS. Since some concurrency 

related problems are already solved in ROS, emerging descriptive language will play a role in both 

optimizing already defined solutions proposed by ROS and implementing new approaches regarding 

concurrency on top of ROS stack. 

 


