
Redefining abstractions in software engineering using AI 
 

To deal with ever-increasing complexity and scale of software, Software Engineering has relied heavily 

on abstractions. These abstractions range from abstracting binary nature of computing hardware to 

compilers, interpreters, high-level programming languages, and abstractions in the form of software 

architecture. While these abstractions help to produce software that can perform complex 

functionalities, they also introduce certain overhead in terms of complexity and performance. Hence, 

besides solving real business and societal problems, software engineering is also concerned with 

solving challenges that originated due to the abstractions we introduced. 

Artificial intelligence, and especially generative AI in form of LLMs keeps proving that it can assist 

software engineers with a wide spectrum of tasks. In this work, we aim to select one of the many 

abstractions introduced in software engineering and use AI to try and bridge it, i.e., remove the 

abstraction and use AI as an interpreter between engineers and computers. 

Expected benefits are more efficient code optimized for the underlying hardware and more efficient 

creation of software solutions. In return, we expect to see higher performance of software, spending 

less computing resources improving sustainability, and decreasing the price of digitalisation. 

To execute this work, we will first select one abstraction in software engineering and quantify its 

benefits and overhead. Then, we will summarize existing AI tools and select the most adequate ones 

for the task at hand. Then, we will create a conceptual solution, reason how it fits into standard 

development methodologies, and implement it in a form of a toolchain. Finally, we aim to evaluate the 

solution in an industrial environment. 

 


