JASMIN JAHIC, SIMON BARNER HANDLING

jj542@cam.ac.uk CONCURRENCY IN
barner@fortiss.org EMBEDDED SOFTWARE
hitps://jahic.github.io/hipeac2021 SYSTEMS FROM

09:30 - 13:00, 18.01.2021 ARCHITECTURAL POINT
BUDAPEST, HUNGARY OF VIEW: PART 1

https://jahic.github.io/hipeac2021

AGENDA

9:30

10:30

|
10:45

11:45

|
12:00

13:00

Session l: Fundamental Issues with
Concurrency in Embedded Software
Systems from Architectural Point of View

Session 2: Modelling and DSE Methods
for Mixed-Critical Software Systems
using Multicore Architectures

Session 3: Synchronization in
Concurrent Software is an Architectural
Decision

AGENDA

9:30

10:30

|
10:45

11:45

|
12:00

13:00

Session l: Fundamental Issues with
Concurrency in Embedded Software
Systems from Architectural Point of View

Session 2: Modelling and DSE Methods
for Mixed-Critical Software Systems
using Multicore Architectures

Session 3: Synchronization in
Concurrent Software is an Architectural
Decision

SESSION 1

10:30

B

archite

Understand the basics of computing laws
and how they relate to architecture topic

Understand important architectural
properties of embedded systems affected
by introducing concurrency

LITERATURE

* [1] The Free Lunch Is Over: A Fundamental Turn Toward
Concurrency in Software, Dr. Dobb's Journal, 30(3), March 2005

* [2] Software Architecture in Practice, Len Bass, Paul Clements, Rick
Kazman, 3rd edition, 2012

* [3] Pragmatic Evaluation of Software Architectures, J. Knodel, M.
Naab, 2016

e [4] G. M. Amdahl, "Computer Architecture and Amdahl's Law," in
Computer, vol. 46, no. 12, pp. 38-46, Dec. 2013

* [5] A glimpse of real-time systems theory and practice in the wake of
multicore processors and mixed-criticality, Tullio Vardanega,
University of Padua, Italy, ACACES 2020, HIPEAC -
https://www.hipeac.net/acaces/2020/#/program/courses/8/

* The Art of Multiprocessor Programming, M. Herlihy, N. Shavit, 2011

48 Years of Microprocessor Trend Data

Transistors
(thousands)

Single-Thread

MOORE'S LAW R Lty
AND DENNARD | | T in i i requency (MHz

Typical Power

SCALING I ’ e "' 3.-;' v ': o3 (Watts)

Number of
Logical Cores

GO & 0 SN WHIPNN ¢ &

1970 1980 1990 2000 2010 2020

Year

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten
New plot and data collected for 2010-2019 by K. Rupp

https://github.com/karlrupp/microprocessor-trend-data

MOORE’S LAW
AND DENNARD
SCALING

k

il

Pentium Dual- Athlon 64 X2, 2007
Core, 2007

Free lunch: Every new generation of processors would
execute with higher frequency — software execution
becomes automatically faster — is over! [1]

Post Dennard scaling breakdown performance drivers:
* Computer architecture improvements
* Concurrency and parallelism (forced to use multicores)

* Power consumption

Drivers for using multicores
* Improve execution time
¢ Improve throughput
* Redundancy (availability, reliability)

* Power consumption

Without compromising other system quality properties

SOFTWARE
SYSTEM
ARCHITECTURE

“Software architecture is the structure of the
structures of the system, which comprise
software components, the externally visible
properties of those components, and the
relationships among them.” [2]

Requirements
Drivers

Decisions

-

Requirements

.}
3

SOFTWARE ,
SYSTEM BE] R ool
ARCHITECTURE
AR

Reasoning

Decision
making

ISO/IEC 25010:2011 - systems'and software
quality requirements and evaluation

- systems and soitware
SOFTWARE ISO/IEC/IEEE 12207 - sy d sof
QU ALITY engineering - software life cycle processes

IEEE 730 - software quality assurance

IEEE 1012 - verification and validation (V&V)

Functional suitability Performance efficiency Compatibility Usability

Functional completeness Time behaviour Co-existence Appropriateness
recognizability

Functional correctness Resource utilization Interoperability Learnability

Functional appropriateness Capacity Operability

QUALITY

DRIVERS = Quality template [3]

= Quantification of quality in a context

ID Unique identifier Status
Name Name of scenario Owner
Quality Related quality attribute: exactly one attribute Stakeholders

should be chosen.

Quantification

Environment Context applying to this scenario. May describe

both context and status of the system.
Stimulus The event or condition arising from this

scenario.
Response The expected reaction of the system to the

scenario event.

IVERS FOR
ADOPTING
MULTICORES:
SET#1

= Execution time
» Redundancy (availability, reliability)

= Power consumption

-

EXECUTION TIME:
IDEAL QUALITY
DRIVER
EXPECTATIONS

Application software is executing on a #Hcores = 1

single core CPU. Execution time =t
Stimulus | Migrate to a double core CPU
Reduce execution time by half. Execution time = t/2

= Some operations have to execute physically sequentially.
THE ORETI C .A.L = “If ... one decided to improve the performance by
putting two processors side by side with shared memory,

LIMITATIONS OF one would find approximately 2.2 times as much

hardware. The additional two-tenths in hardware
PERFORMAN CE accomplish the crossbar switching for the sharing. The
G AINS [4] resulting performance achieved would be about 1.8.
...the assumption ... each processor utilizing half of the
memories about half of the time. “, ILLIAC IV computer

* Gene M.Amdahl. 1967.Validity of the single processor
approach to achieving large scale computing capabilities.
In Proceedings of the April 18-20, 1967, spring joint
computer conference (AFIPS '67 (Spring)). Association for
Computing Machinery, New York, NY, USA, 483—485.

| N~ 7.

[1)

-
~!\
-

E g L

= Speedup = TS+£”; n — number of cores; T=1

GAINS ool

1 : 1
——; —(Ts = const.) — lim -
T+ n—oo TS+?1’ s

~

n

= Assumptions:

* Fixed-sized problem; Tp is independent of n.

= The slowest task’s part limits the speedup

Parallelizable Not parallelizable — sequential only

X %
)

VANVAN

Execution time T

AMDAHL'S LAW

25 29 33 37 41
Processor Count

= Effect of Amdahl’s law on speedup as a fraction of clock
cycle time in serial mode, John L. Hennessy and David A.
Patterson. 2019. A new golden age for computer
architecture. Commun. ACM 62, 2 (February 2019), 48—60.
DOIl:https://doi.org/10.1145/3282307

= “For example, when only 1% of the time is serial, the
for a 64-processor configuration is about

. ‘ L = The problem scales with the number of available
-~ GUSTAFSON’S cores (NOT fixed-sized problem)

LAVV = Fixed execution time

" Increase in throughput

= John L. Gustafson. 1988. Reevaluating Amdahl's
law. Commun.ACM 31, 5 (May 1988), 532-533

Amount of work
Execution time

AMDAHI’'SVS 1 2 3 4 5 1 2 3 4 5
GUSTAPSON Number of cores p Number of cores p Amdahl's law
ASSUMPTIONS

B.H.H. Juurlink and C. H. Meenderinck.
2012. Amdahl’s law for predicting the
future of multicores considered
harmful. SIGARCH Comput. Archit.
News 40, 2 (May 2012), 1-9.
DOI:https://doi.org/10.1145/2234336.
2234338 1 2 3 4 5 1 2 3 4 5

Execution time

-
~
o
=

L
o

)
&
i}
o
g

<

J
Number of cores p Number of cores p Gustalson'slaw

EXECUTION TIME

= Parallelise a single task

" Increase throughput

Improve Average case
execution time | execution time

Single task User experience

Group of tasks User experience
(New features)

Wozrst case execution
time

Real-time constraints

Real-time constraints/
Freedom from interference

Best Case Worst Case
Execution Time Execution Time

Upper Bound

SOFTWARE IN
EMBEDDED
SYSTEMS

Task 1 Task 2 Task n Task 1 INTERRUPT Task n Task 1 Task 2 Task n

WHAT COULD
POSKIBLY GO
WRONG?

Supervised Testing of Embedded
Concurrent Software, PhD thesis,
Jasmin Jahic, 2020

Embedded Optimal Use of Synchronization
Systems | Hardware Resources

Software
Synchronization
Intentions

Power
[~ = Consumption Synchronization
Mechanism Patterns|

Performance Execution =
Time

Real-Time Worst Case Executionl] -~
Safety-Criticall- — = Constraints Time Prediction |
Execution Tracing
- _ O
Testing and

—_= Certification Verification in
~ ="} Complex Execution
Environment - — Report Coverage -

Find
Concurrency
Bugs

QUALITY
DRIVERS FOR
ADOPTING

MULTICORES:

SET#2

= Average execution time

= User experience

Safety-critical

Real-time constraints

* Do not compromise execution correctness

Improve
execution time

Single task

Group of tasks

Average case
execution time

User experience

New features

Worst case execution
time

Real-time constraints

Real-time constraints/
Freedom from interference

|
QUALITY V Execution time

PROPERTIES Set#l 1;:;:?::;: Iila;?(i)lzbility, reliability)

OF EMBEDDED |
SYSTEMS

RELATED TO ‘_ User experience

Set#2 Real-time constraints

MULTIC ORES Safety-critical

Do not compromise execution correctness

Average execution time

Task 1

EXECUTION
TIME: SIMPLE

CASE

Task 1

.
}

EXECUTION
TIME: SIMPLE - g,
CASE

Cache replacement policy Translation lookaside
buffer (TLB)
L1 Cache L2 Cache
Page table

.

HDD/SSD

access

= CPU:

= Pipelines

4
= Speculation %@1.@
= Cache behaviour J?% 2
(¢
= Cache pre-emption "’*q@l
&
* Memory hierarchy "7?1}?1.
6‘?}-
(o

Application software

= Execution path - Input

Design and Analysis of Time-Critical Systems, Jan
Reineke, Saarland University, Germany, Summer
School ACACES 2017

CPU

Level 3
Cache
reference

Level 2
Cache
reference

256 KB
3-10ns

Level 1
Cache
reference

Register
reference

2-4 MB

Size: 1000 bytes 64 KB
10-20 ns

Speed: 300 ps 1ns

Disk
memory
reference

Memory
reference

4-16 GB
50-100 ns

(a) Memory hierarchy for server

Memory

CPU

Level 2
Cache
reference

256 KB
10-20ns

Level 1
Cache
reference

Register
reference

Size: 500 bytes 64 KB
Speed: 500 ps

Flash
memory
reference

—
Memory
reference

256-512 MB
50-100 ns

hierarchy for a personal mobile device

Computer architecture : a quantitative approach / John L. Hennessy, David A. Patterson.
5th edition, 2011

SRAM semiconductor memory

0.5-2.5ns

DRAM semiconductor memory

50-70ns

Flash semiconductor memory

5,000-50,000ns

Magnetic disk

5,000,000-20,000,000ns

Patterson, D.A. & Hennessy, J.L. (2017). Computer organization and design: The
hardware/software interface RISC-V edition

€ Absint Advanced Analyzer for PowerPC e200: C:/Program Fi wced Analy. 200/b262103/sh I /07 _benchmarks/dry2 1.3

Project Analysis Graph Views Help

=] [£ L %\, G m\] Analysis graph

a Home

Computed Worst Case for Entry 'main': 68.182 us

= Analyses

Cache Statistics:
- L1 Unified Cache: max 2074 hits, max 92 misses

Setup

L4

Y

1.402 ps

]

Proc@: 6.304 ps

e,

Procl: 2.697 us malloc_x: 1.493 ps . strecpy_x: 26.296 us

stremp x: 7.069 ps : memcpy x: 9.682 us

£
£
k=
(1)

A Messages 4 Memory Usage

https://www.absint.com/ait/gallery.htm#shot5

%

so%
. . . Y/

= Single core execution time: 12 [s] °1;\Q,

EXECUTION AW e,
= Dual-core execution time: 7 [s] 2,

ALV Speedup: 1.71 Yo
* Speedup: 1.71x
MULTIPLE

TASKS CASE

L1 Cache L2 Cache

Translation lookaside
buffer (TLB)

Page table

Memor
Memory bus y

controller

Core#l

L1 Cache

Core#2

11 : h 1 1
] 193894181988 103
16091919 188 11 00, . 1010309842, Ry 1199
D 1 ;'M 1.0 11 14 1 01HAOQ 21 0
, Execute | ' Write-back ? 9 Q(
——] vli({

9191 ' EXECUTION TIME;
MULTIPLE TASKS CASE

?

" .". ," '_.

WCET OF
TASKS ON
MULTICORES

PROARTIS: PRObabilistic
Analyzable Real Time
Systems -
www.rapitasystems.com/ab
out/research-
projects/proartis-
probabilistic-analyzable-
real-time-systems

= “The WCET of even the simplest single-path

program running alone on a CPU does not stay the

same when other programs run on other CPUs” [5]

Frequency

Single task execution time

0.00015
1

With mild opponent

0.00010

0.00005

E!

. ,

1000000 1500000 2000000 2500000 3000000 3500000

0.00000

Execution time

EXECUTION

TIME: "= New task 3: 7 [s]
MULTIPLE

TASKS CASE

b8
4
%
%
%0
o
EXECUTION = Single core execution time: 19 [s] JI‘Q’@,Q
1~ o
TIME = Dual-core execution time: 12 [s] %’?@0
(o
MULTIPLE " Speedup: 1.58x
TASKS CASE
Task 1 Task 2 | Task 3

L1 Cache

Translation lookaside
buffer (TLB)

Page table
_ - -
T
.

L1 Cache

0 0.1

Execute

10

U
|

1140
10711.9.8 QC
B EE 141 1 EXECUTION TIME:

MULTIPLE TASKS CASE

8 .
A .

. _ . - -

ERS FOR = Core affinity
ADOPTING = Scheduling policy
MULTICORES: s
SET#3

SCHEDULI
ON
MULTICORE
PROCESSORS

produées a valid schedule for that problem

= A scheduling algorithm is optimal if it always
produces a feasible schedule when one exists

= Utilisation Ui of a task Ti: The ratio between
execution time (Ci) of a task and a period of time
Pi: U i = ﬁ
P.

l
= Utilisation for the system: U=}, U;< m; m —
number of cores

N

SCHEDULING
O\
MULTICORE
PROCESSORS

using static scheduling), while at the same time

* Minimise pre-emption

¢ Minimise spinning

e Deadlines

MNo optimal on-line scheduler can exist for a set of

jobs with two or more distinct deadlines on any
(m > 1) multiprocessor system. j¥il=loic=Vs M| 3 (e}sle

Leung: RTSS 1988, IEEE TCO 1992]

EXECUTION
TIME:
MULTIPLE
TASKS CASE

Task 1

Task 2 Task 3

X
4
%
%
%12
(o)
EXECUTION = Single core execution time: 19 [s] 12\%/@
1. o
TIME: = Dual-core execution time: 9.5 [s] %’%&,
(o
MULTIPLE = Speedup: 2x (ideally, but not really)
THREADS CASE
Task 1 7 Thread 3.1 041 Task 2 i Thread 3.2 9

CONCURRENCY
BUG EXAMPLE

|
J

01
N

0

01

.

6d g1§0j | threadl RALOCK
1 1] M' LOCK
{

S

.

-

JJog,

111

-

CPU

threadl

S 100

o

thread?2

threadl

ool:{=w8) CORE 2:

Lo L L1

iR
1
P nn4

200 200 150

.
.

100 200 200 zoo 50 RV 4 m“
Ooo U U \)1 0 0\1 (
101% 0 0 /
B 0,8
11 19 1 Q10 .
100 100 200 200 150
z :
o N 00550 ST
F '
“i " .
. ! ' -

DRIVERS FOR
ADOPTING
MULTICORES:
SET#4

Ways and means to partition software -
partitioning strategy

Thread start-up time
Synchronisation
Liveness
Concurrency bugs

Bugs that exist on execution paths possible only
because of concurrency

QUALITY PROPERTIES OF EMBEDDED SYSTEMS
RELATED TO MULTICORES

Set#l SetH2 Set#3 Set#4

Execution time Average execution

time

Core affinity Ways and means to

partition software -

Redundancy Scheduling policy

(availability, reliability)
Power consumption

User experience
Real-time constraints
Safety-critical

Do not compromise
execution correctness

Interrupts

partitioning strategy
Thread start-up time
Synchronisation
Liveness
Concurrency bugs

Bugs that exist on
execution paths
possible only because
of concurrency

COMPUTER
ARCHITECTURE
IMPROVEMENTS

Instruction count *CPI

CPU performance (time): 2ok rate

* Instruction count
* CPI - cycles per instruction
* Clock rate

Focus on architectural improvements and how to use the
larger number of transistors without being reliant on
silicon performance improvements

Instruction set (e.g., RISC-V)
Instruction-level parallelism - Pipelining
Data-level parallelism

Prediction (e.g., branch prediction)

Process p

A
MULTITHREADED
PROCESS

,»-..each thread runs independently of the others, and each thread may run a different sequence of
instructions.”, C++ Concurrency in action, practical multithreading, Anthony Williams, 2012

. P l
» °~8 i
FREE LUNCH 7N r
- - e

J /| 1

ID 001 Status
Name Owner
Quality Average case execution time — single task — no Stakeholders
partitioning
Quantification
Environment Single task is executing on a CPU Execution time =t
Stimulus Migrate to a new hardware (CPU) generation #cores, CPU architecture
platform improvements, CPU frequency,
memory (size, speed,
hierarchy)
Response Significantly reduced (by factor k) execution time | Execution time = t/k

FREE LUNCH

Driver#001

#cores —irrelevant —
k1=0

Execution time = t/k
k=k1+k2+k3+ka

CPU architecture
improvements - k2

CPU frequency— k3~ 0

. P l
» °~8 i
FREE LUNCH 7N r
- - e

J /| 1

ID 001 Status
Name Owner
Quality Average case execution time — single task — no Stakeholders
new tasks - no partitioning
Quantification
Environment Single task is executing on a CPU Execution time =t
Stimulus Migrate to a new hardware (CPU) generation #cores, CPU architecture
platform improvements, CPU frequency,
memory (size, speed,
hierarchy)

Response Significantly reduced (by factor k) execution time | Execution time = t/k

Set#3

Core affinity

THROUGHPUT AND Scheduling policy

USER EXPERIENCE Interrupts
ID 002 Status
Name Owner
Quality Average case execution time — multiple tasks — no | Stakeholders

new tasks - no partitioning
Quantification

Environment Multiple tasks are executing on a CPU Execution time =t
Stimulus Migrate to a new hardware (CPU) generation #cores, CPU architecture

platform

improvements, CPU frequency,
memory (size, speed,
hierarchy), set#3 params

Response

Significantly reduced (by factor k) execution time

Execution time = t/k

Set#3

Core affinity

THROUGHPUT AND Scheduling policy
NEW FEATURES Interrupts
<
ID 003 Status
Name Owner
Quality Average case execution time — multiple tasks — Stakeholders
new tasks — no partitioning
Quantification
Environment Multiple tasks are executing on a CPU Execution time =t
Stimulus Add new features/new tasks and reconfigure the | #features (and their
system requirements), set#3 params
Response System runs with the new features, and with a #newFeatures, new execution

new execution time that is acceptable

time

Set#3

THROUGHPUT AND Core affinity

RE- Scheduling policy

CONFIGURATION Interrupts

.
.
ID 004 Status
Name Owner
Quality Average case execution time — multiple tasks — no | Stakeholders
new tasks - no partitioning
Quantification

Environment Multiple tasks are executing on a multicore CPU | Execution time =t
Stimulus Configure set#3 parameters set#3 params
Response Significantly reduced (by factor k) execution time | Execution time = t/k

- &

Set#3 Set#4

Core affinity Ways and means to partition software -
partitioning strategy
SPEEDUP O]_:' A Interrupts Thread start-up time
SINGLE TASK
. ,
ID 005 Status
Name Owner
Quality Average case execution time — single task — Stakeholders
partitioning — no dependencies
Quantification
Environment Task is executing on a CPU Execution time = t; #cores>1
Stimulus Partition the task into threads H#Htreads>1, set#3 params, set#4
params (,

)

Response Significantly reduced (by factor k) execution time | Execution time = t/k

Set#3

Core affinity

Set#4

Ways and means to partition software -

Scheduling policy partitioning strategy
Interrupts Thread start-up time
SPEEDUP OF A Synchronisation
SINGLE TASK Liveness
Concurrency bugs
Bugs that exist on execution paths possible
° only because of concurrency
ID 006 Status
Name Owner
Quality Average case execution time — single task - Stakeholders
partitioning — dependencies, shared memory
Quantification
Environment Task is executing on a CPU Execution time = t; #cores>1
Stimulus Partition the task into threads #Htreads>1, , Set#3
params
Response Significantly reduced (by factor k) execution time | Execution time = t/k

= What else is affected by partitioning software
SOFTWARE

tasks into threads?
PARTITIONING -

MULTITHREADING = Part 3: Synchronization in Concurrent Software is
an Architectural Decision

Set#3

Core affinity

Scheduling policy

Interrupts

= We can try and limit concurrency (set#3
parameters)

WHAT AB OUT = In general, more cores and more tasks makes it
harder to predict WCET - increase hardware
WORST CASE interference
EXECUTION

TIME? Optimal scheduling in multicores

= Some theoretical concepts — hard to implement [5]
(RTOS not ready)

Use multicores to decrease WCET?

= Not (always) a good idea [5]

ptolemy.berkeley.edu/proj
ects/chess/pret/

Hcache f oot " Sense amplifiers | DRAM memory banks

Translation lookaside
buffer (TLB)

Page table

e T

Decode Execute Memory Write-back
access
HDD/SSD

peae Write-baCk
access

1

L1 Cache

https://ptolemy.berkeley.edu/projects/chess/pret/

Model hardware — level depends on
prediction needs

= Transistors

= Memory (cache, DRAM, cache policy)

ARCHITECTURE = Processor (pipelining, temperature,

number of cores, frequency)

MODELLING

Static code analysis

Dynamic monitoring

Perform analysis on models

* Open source tool platform for engineering embedded
multi- and many-core software systems

* http://www.amalthea-project.org/

AMALTHEA

AMALTHEA
Trace
Model

sl Partitioning
o - |dentification of
il initial tasks

Mapping
« Simulation
« Optimization

System
Model

ARCHITECTURAL
VIEWS FOR
CONCURRENCY
AND PARALLELISM

https://www.viewpoints-and-
perspectives.info/vpandp/wp-
content/themes/secondedition/doc
/spal9l-viewpoints-and-
perspectives.pdf

* Process View - ’4+1"view,
P. B. Kruchten, “The 4+ 1
view model of
architecture,’ IEEE
software, vol. 12, no. 6, pp.
42-50, 1995

* Concurrency View, N.
Rozanski and E. Woods,
Software systems
architecture: working with
stakeholders using
viewpoints and
perspectives, 2nd ed.
Upper Saddle River, NJ:
Addison-Wesley, 2012.

Terminal
process

Controller
process

task

Controller task

Controller task High rate

Low rate

<<process>> / Y, <<process>>
Win32 Client Process |/ Statistics Service Proc.

4 << >>
] tatistics Accessor process group
DisplayClient DBMS Processes.
]
‘/ tatistics Calculator
4
/

! <<mutex>>
| stats update mutex
<<process>> A
Statistics Calc. Prd \

ARCHITECTURAL
VIEWS FOR
MULTITHREADED
PROGRANMS - A
FRAMEWORK FOR
AUTOMATIC
EXTRACTION OF
CONCURRENCY-
RELATED
ARCHITECTURAL
PROPERTIES
FROM SOFTWARE

https://mpourjafarian.github.io/ArchViMP.github.io/

SystemC

Memory (e.g., DRAMSys: Tool for
Optimizing Memory Systems through
Simulation Analyses -

SIMULATORS

The Sniper Multi-Core Simulator -

* gemsy -

https://www.iese.fraunhofer.de/en/innovation_trends/autonomous-systems/memtonomy/DRAMSys.html
https://snipersim.org/w/The_Sniper_Multi-Core_Simulator
https://www.gem5.org/

- -

Speedups from performance engineering a prog@m.thaf multiplies two

IS CONCURRENT
ati , PROCESSING ON
time relative to the preceding line. - . MULTICORES THE

Q-
(4) parallelizing the code to run on all 18 of the processing cores, (5) ?%{\Tg;’]‘;i%g’? IS
exploiting the processor’s memory hierarchy, (6) vectorizing the code, and

(7) using Intel’s special Advanced Vector Extensions (AVX) instructions.

.- Implementation Running time (s) Absolute speedup | Relative speedup

Python 25 552.48 (OIS 1
2 Java 2 372.68 11 10.8
3 C 542.67 47 4.4
4 Parallel loops 69.80 366 1.8
5 Parallel divide and conquer 3.80 6727 18.4
6 plus vectorization 1.10 23 224 3.5
7 plus AVX intrinsics 0.41 62 806 2.1

There’s plenty of room at the Top: What will drive computer performance after Moore’s law? E. Leiserson et

all, Science 05 Jun 2020:Vol. 368, Issue 6495, DOI: 10.1126/science.aam9744

= "Virtually every C++ application developed at
Google is multithreaded.", ThreadSanitizer — data
race detection in practice, K. Serebryany, T.
Iskhodzhanov, Workshop on Binary
Instrumentation and Applications, 2009

= OpenMP

* An Implementation of LLVM Pass for Loop
Parallelization Based on IR-Level Directives, K.
Jingu et al., 2018

* Hydra - https://github.com/jamrol 149/Hydra
= Janus - https://github.com/timothymjones/Janus
= SLX C/C++ -

https://www.silexica.com/products/slx-c/

\
/ -

- = Increase in power consumption and heat

dissipation (without frequency increases)
= Not all cores can be powered at the same time

= Dark silicon

HETEROGENEOUS
ARCHITECTURES

Unity in Diversity: Co-operative
Embedded Heterogeneous
Computing, Keynote, Tulika Mitra,
SAMOS 2018

Turning a problem into an opportunity

Silicon area is cheaper relative to power

Spend area to buy power

Right core for the right task: Performance and

Efficiency

Missing piece: Software for heterogeneous

Do we need to break HW-SW abstraction?

Few drivers (set#1)

Complex follow-up requirements (set#2,3,4)

What is important and what is not

= Scale and use case matter

It is hard to make proper architectural decisions

= And...once you get the design right (Design
Space Exploration — part 2) — you still need to
develop and test it properly (part 3).

AGENDA

9:30

10:30

|
10:45

11:45

|
12:00

13:00

Session l: Fundamental Issues with
Concurrency in Embedded Software
Systems from Architectural Point of View

Session 2: Modelling and DSE Methods
for Mixed-Critical Software Systems
using Multicore Architectures

Session 3: Synchronization in
Concurrent Software is an Architectural
Decision

