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SPEEDUP OF A 
SINGLE TASK

ID 006 Status

Name … Owner

Quality Average case execution time – single task –

partitioning – dependencies, shared memory

Stakeholders

Quantification

Environment Task is executing on a CPU Execution time = t; #cores>1

Stimulus Partition the task into threads #treads>1, set#4 params, set#3 

params

Response Significantly reduced (by factor k) execution time Execution time = t/k

Set#3

Core affinity

Scheduling policy

Interrupts

Set#4

Ways and means to partition software -
partitioning strategy

Thread start-up time

Synchronisation

Liveness

Concurrency bugs

Bugs that exist on execution paths possible 
only because of concurrency



CONCURRENCY 
BUG EXAMPLE

thread1

thread2

R(S)

CPU
CORE 1: 
thread1

CORE 2: 
thread2

100+100

S

W(S)

R(S) 200-50 W(S)

thread1

thread2

R(S) W(S)

R(S) 100-50 W(S)

S 100 100 200 200 200 150

S 100 100 200 200 200 50

100+100

thread1

thread2

R(S) W(S)

S 100 100 200 200

100+100LOCK

LOCK WAIT

UNLOCK

R(S) 200-50 W(S)

200 150



THE PROBLEM 
WITH THREADS

• “They (threads) discard the most essential and 

appealing properties of sequential computation: 

understandability, predictability, and 

determinism.” [1]

• “Nondeterminism should be explicitly and 

judiciously introduced where needed, rather 

than removed where not needed. “[1]

• “humans are quickly overwhelmed by 

concurrency and find it much more difficult to 

reason about concurrent than sequential code. 

Even careful people miss possible interleavings

among even simple collections of partially 

ordered operations.” [2]

[1] Edward A. Lee. 2006. The Problem 

with Threads. Computer 39, 5 (May 

2006), 33–42. DOI: 

https://doi.org/10.1109/MC.2006.180

[2] H. Sutter and J. Larus. Software and 

the concurrency revolution. ACM 

Queue, 3(7), 2005.

https://doi.org/10.1109/MC.2006.180


THE PROBLEM 
WITH THREADS

• Given a program and an initial state, any two programs p and p’ 

(that compute the same function) can be compared. They are 

equivalent if they halt for the same initial states, and for such 

initial states, their final state is the same.

• Assume that p1 and p2 execute concurrently in a multithreaded 

fashion. Pair (p1, p2) is equivalent to (p'1, p'2) if all interleavings

halt for the same initial state and yield the same final state.

• BONUS: we have to know about all other threads that might 

execute.

• #threads n, #instructions i; 

• "with threads, there is no useful theory of equivalence“ [1]

• "achieving reliability and predictability using threads is 

essentially impossible for many applications“ [1]

• “to replace the conventional metaphor a sequence of steps with 

the notion of a community of interacting entities” [3]

[1] Edward A. Lee. 2006. The Problem 

with Threads. Computer 39, 5 (May 

2006), 33–42. DOI: 

https://doi.org/10.1109/MC.2006.180

[3] L. A. Stein. Challenging the 

computational metaphor: 

Implications for how we think. 

Cybernetics and Systems, 30(6), 

1999

#interleavings = 𝟐𝒏∗𝒊

https://doi.org/10.1109/MC.2006.180


ARCHITECTURAL 
PATTERNS AND 
ANTI-PATTERNS

▪ Patterns: Reuse previous knowledge

▪ Problem; Solution; Advantages; Disadvantages

▪ Anti-patterns: Avoid, bad smells, technical debt

▪ Design; Threshold; Severity

▪ Unstable dependency: A subsystem (component) 

that depends on other subsystems that are less 

stable,  with a possible ripple effect of changes in 

the project.

▪ Cyclic dependency (CD): A subsystem 

(component) that is involved in a chain of relations 

that break the desirable acyclic nature of a 

subsystem dependency structure. 

▪ Hotspot Patterns: Implicit Cross-Module 

Dependency, Cross-Module Cycle, and Cross 

Package Cycle. 

Software Architecture 

Measurement—Experiences from a 

Multinational Company, W. Wu, Y. Cai, 

R. Kazman et al., ECSA 2018



THREADS FROM 
SOFTWARE 

ARCHITECTURE 
PERSPECTIVE

• Cohesion: the degree to which the elements inside a 

module belong (logically) together

• Coupling: A measurement of interdependence 

between components.

• Data coupling, control coupling, temporal coupling...

• Example: Does one component need to understand 

what is happening in other component in order to use 

it?

• Usual goals: High cohesion and low coupling

• Threads are implicitly coupled:

• Directly: One thread needs to know how all other 

threads access shared resources

• Indirectly: Shared hardware

• The problem with threads: there are no interfaces for 

accessing shared memory – not transparent at all [1]

[1] J. Jahić, V. Kumar, P. O. Antonino and G. 

Wirrer, "Testing the Implementation of 

Concurrent AUTOSAR Drivers Against 

Architecture Decisions," 2019 IEEE 

International Conference on Software 

Architecture (ICSA), Hamburg, Germany, 

2019, pp. 171-180, doi: 

10.1109/ICSA.2019.00026.



SYNCHRONISATION 
MECHANISMS

Repeating scheduling cycle

T1

shared(A)CORE 1 CORE 2

T2

LOCK(A)

LOCK(A)

WAIT (A)

WORK

UNLOCK(A)

a) Lock

WORK

UNLOCK(A)

T1

barrier(A)CORE 1 CORE 2

T2

BARRIER(A)

WORK

b) Barrier

BARRIER(A)

CONTINUE

T1

shared(A)CORE 1 CORE 2

T2

SLEEP()
sleep()

c) Inter-thread synchronization

access(A)

notify()

CONTINUE

T1 T5 

T2 T4

T3

T2 T4

T3

A B D B E C A DB ED

CORE 1

CORE 2

...

...

e) Pre-defined cyclic scheduling with pre-conditions and timing barriers

T1

Condition variable (condVar), lockCORE 1 CORE 2

T2

LOCK(lock)
while (condVar.isTrue()) {...}

LOCK(lock)
while (condVar.isFalse()) {  

d) Monitors with condition variables

WORK

SIGNAL(condVar)
UNLOCK(lock)

CONTINUE

wait(lock, condVar); }

WORK

Preconditions, one thread starts only when 
previous completes.

Threads have reserved execution time slots. 
Even if they complete earlier, they will wait for 
the time to elapse.

WAIT (A)

WORK



LOGICAL 
EXECUTION 
TIME (LET) 

SCHEDULING

• Taming concurrency non-determinism

• Program reads input in zero time

• Program executes

• Program writes output in zero time

• Execution time = LET

• “if the program completes execution before the 

deadline, writing output is delayed until the deadline, 

i.e., until the LET has elapsed”

• The LET deadline is an upper bound, but also a lower 

bound, at least, logically. 

• “In the LET model, using a faster machine does therefore 

not result in (logically) faster program execution but only 

in decreased machine utilization”

Kirsch C.M., Sokolova A. (2012) The 

Logical Execution Time Paradigm. In: 

Chakraborty S., Eberspächer J. (eds) 

Advances in Real-Time Systems. 

Springer, Berlin, Heidelberg. 

https://doi.org/10.1007/978-3-642-

24349-3_5



NON-BLOCKING 
SYNCHRONIZATION

▪ Atomic Compare and Swap (CAS)

▪ Load Linked, Store Conditional (LL/SC) 

▪ Data structures:

▪ Ring

▪ Buffer

▪ Queue



NON-BLOCKING 
SYNCHRONIZATION

▪ Simple code (https://github.com/KhuramAli/JAM-

Benchmark)

▪ Multi-Producer/Multi-Consumer pattern (MPMC)

▪ Producers = 4; Consumers = 4;

▪ Single-Producer/Single-Consumer Ring Buffer (SPSC)

▪ Each test executed 1000 times

▪ Lock based (LB): std::mutex.lock(); std:: mutex.unlock();

▪ Lock free (LF): boost::lockfree::queue

J. Jahić, K. Ali, M. Chatrangoon, and N. 

Jahani. 2019. (Dis)Advantages of Lock-free 

Synchronization Mechanisms for Multicore 

Embedded Systems. International 

Conference on Parallel Processing: 

Workshops (ICPP 2019) DOI: 

https://doi.org/10.1145/3339186.3339191
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CONCURRENCY 
BUGS

T1
LOCK

B=SCRIPT;
UNLOCK
 

LOCK
B.EXEC()
UNLOCK

Variable(B)CORE 1 CORE 2

T2

LOCK(B)

WAIT

B = SCRIPT 

B=NULL

b) Atomicity violation (race free) - 
Programmers expect that some code 
regions will execute atomically.

LOCK(B)
B.EXEC()

UNLOCK(B)

UNLOCK(B)

T1

Variable(B)= NULLCORE 1  CORE 2

T2

LOCK(B)
B.COMPILE()
UNLOCK(B)

c) Order violation bugs - occur when the intended order 
between two operations (e.g., initialization is expected to 
execute before compile) is flipped. It is expected that T1 will 
first initialize variable B.

LOCK(B)
B = SCRIPT
UNLOCK(B)

T1

Variable(B)CORE 1 CORE 2

T2
LOCK(B)

WAIT(B)

d) Priority inversion – Priorities (T2>T3>T1). T2 can 
make T1 to release the lock on lock on B. However, 
T1 has been already preempted by T3. Now T2 waits 
on T3 and T1, but it has a higher priority then both.

T3

T1

Locks(A, B)CORE 1 CORE 2

T2

LOCK A

LOCK B

WAIT (B)

WAIT (A)

f) Deadlock

T1

Variables(A, B)CORE 1 CORE 2

T2

LOCK(A)

LOCK(B)

WAIT (B)

WAIT (A)

DO SOMETHING

DO SOMETHING

WAIT (B)

WAIT (A)

g) Livelock -  states of the threads involved in the 
livelock constantly change with regard to one 
another. However, none is progressing.

T1

SchedulerCORE 1 CORE 2

T2

Scheduled

WORK

Complete

h) Starvation - Thread T2 has a higher priority. The 
scheduler never schedules the T1 for execution.

T1

B {TARGET_SPEED, 
ENGINE_ON}

CORE 1 CORE 2

T2

LOCK(B)
B.TARGET_SPEED = 0

UNLOCK(B)

LOCK(B)
B.ENGINE_ON = TRUE

UNLOCK(B)

e) Multivariable concurrency bugs – 
logical inconsistency. B is a structure.

LOCK(B)
B.TARGET_SPEED = 50

UNLOCK(B)

LOCK(B)
B.ENGINE_ON = FALSE

UNLOCK(B)

TARGET_SPEED = 50
ENGINE_ON=FALSE

Scheduled

WORK

Complete

Scheduled

WORK

Complete

a) Data races

T1

Variable(B)CORE 1 CORE 2

T2

READ(B)

READ(B)

T2 operates on 
outdated B value

WRITE(B)

(OVER) 
WRITE(B)T2



ATOMICITY 
VIOLATION 
EXAMPLE

• t1:

• …

• lock();

• object=new O();

• unlock()

• …

• …

• lock();

• object.method1();

• unlock()

• t2:

• …

• lock();

• object=NULL;

• unlock()

• …



CONCURRENCY 
BUGS

T1
LOCK

B=SCRIPT;
UNLOCK
 

LOCK
B.EXEC()
UNLOCK

Variable(B)CORE 1 CORE 2

T2

LOCK(B)

WAIT

B = SCRIPT 

B=NULL

b) Atomicity violation (race free) - 
Programmers expect that some code 
regions will execute atomically.

LOCK(B)
B.EXEC()

UNLOCK(B)

UNLOCK(B)

T1

Variable(B)= NULLCORE 1  CORE 2

T2

LOCK(B)
B.COMPILE()
UNLOCK(B)

c) Order violation bugs - occur when the intended order 
between two operations (e.g., initialization is expected to 
execute before compile) is flipped. It is expected that T1 will 
first initialize variable B.

LOCK(B)
B = SCRIPT
UNLOCK(B)

T1

Variable(B)CORE 1 CORE 2

T2
LOCK(B)

WAIT(B)

d) Priority inversion – Priorities (T2>T3>T1). T2 can 
make T1 to release the lock on lock on B. However, 
T1 has been already preempted by T3. Now T2 waits 
on T3 and T1, but it has a higher priority then both.

T3

T1

Locks(A, B)CORE 1 CORE 2

T2

LOCK A

LOCK B

WAIT (B)

WAIT (A)

f) Deadlock

T1

Variables(A, B)CORE 1 CORE 2

T2

LOCK(A)

LOCK(B)

WAIT (B)

WAIT (A)

DO SOMETHING

DO SOMETHING

WAIT (B)

WAIT (A)

g) Livelock -  states of the threads involved in the 
livelock constantly change with regard to one 
another. However, none is progressing.

T1

SchedulerCORE 1 CORE 2

T2

Scheduled

WORK

Complete

h) Starvation - Thread T2 has a higher priority. The 
scheduler never schedules the T1 for execution.

T1

B {TARGET_SPEED, 
ENGINE_ON}

CORE 1 CORE 2

T2

LOCK(B)
B.TARGET_SPEED = 0

UNLOCK(B)

LOCK(B)
B.ENGINE_ON = TRUE

UNLOCK(B)

e) Multivariable concurrency bugs – 
logical inconsistency. B is a structure.

LOCK(B)
B.TARGET_SPEED = 50

UNLOCK(B)

LOCK(B)
B.ENGINE_ON = FALSE

UNLOCK(B)

TARGET_SPEED = 50
ENGINE_ON=FALSE

Scheduled

WORK

Complete

Scheduled

WORK

Complete

a) Data races

T1

Variable(B)CORE 1 CORE 2

T2

READ(B)

READ(B)

T2 operates on 
outdated B value

WRITE(B)

(OVER) 
WRITE(B)T2



BUGS CAUSED BY 
CONCURRENCY

• t1:

• lock(); a=10;  unlock();

• lock();

• if(a!=10) {  b=9; }

• else { b=10; }

• unlock();

• …

• lock();

• if(a==10) { c=1/(b-9); }

• unlock();

• t2:

• lock(); a=10; unlock();

a - shared variable



SYNCHRONIZATION 
MECHANISMS AS 
ARCHITECTURAL DECISIONS



FINDING 
CONCURRENCY 

BUGS

• Violation of synchronisation (atomicity) 

intentions

• Memory shared between threads

• Synchronisation mechanisms used by threads

• How to know developers’ intentions?



FINDING 
CONCURRENCY 

BUGS

• Static analysis

• Dynamic analysis (runtime monitoring)

• Testing

• Model checking

PreprocessorSoftware
Specification 

f

Model 
Checker

True or 
False

class Overview Find Concurrency Bugs Concept

«Functional Data Port» Set

Executable Test Case

«Functional Data Port»

Software Execution

Trace

Execute Software

«Functional Data Port» Set

Executable Test Case

«Functional Data Port»

Software Execution

Trace

«Functional Data Port»

Execute Test Case

«Functional Data Port» Software

Execution Trace

Find Concurrency Bugs

«Functional Data Port»

Execute Test Case

«Functional Data Port» Software

Execution Trace

«Functional Data» Test Case

«Functional Data» Software

Execution Report

int sum = 100;

     reportInst()

thread1(100); 

thread2(5);

void thread1(int a){

     reportInst()

Analysis algorithm



EXECUTION 
MONITORING

class Find Concurrency Bugs Concept

Software

Execution

Trace

Set Executable

Test Case

Execute Software

Software

Execution

Trace

Set Executable

Test Case

Execute

Test

Case

Software Execution Trace

Add Concurrency Bug Pattern Add Synchronization

Primitive Pattern

Update Coverage

Report

Add Synchronization

Intention

Generate Concurrency

Report

Find Concurrency Bugs

Execute

Test

Case

Software Execution Trace

Add Concurrency Bug Pattern Add Synchronization

Primitive Pattern

Update Coverage

Report

Add Synchronization

Intention

Generate Concurrency

Report

Report Control Flow Graph

Coverage

Report

Add Execution Trace
Quantify Coverage

Report Control Flow Graph

Coverage

Report

Add Execution Trace

Software Static

Structure

Extract Software 

Static Structure

Software Static

Structure

Lockset

Update

Concurrency Bugs

Report

Report Concurrency 

Bugs

Update

Concurrency Bugs

Report

Update Coverage

Report

Coverage Report

Report Coverage

Update Coverage

Report

Coverage Report

Concurrency Bug

Patterns

Model Concurrency Bugs

Concurrency Bug

Patterns
Synchronization Primitive

Patterns

Model Synchronization 

Primitives

Synchronization Primitive

Patterns
Synchronization

Intentions

Specify Synchronization 

Intentions

Synchronization

Intentions

Execution 

Monitoring

Test Case

Interactive Visualization::

SelectTest CaseTest Case

Software

Coverage

Report

Test Case

Software

Execution

Report

Software

Static

Structure

Concurrency Bug

Patterns

Software

Execution

Report

Software

Coverage

Report

Software

Synchronization

Intentions

Concurrency

Analysis

Report

Test Case

Synchronization

Primitive Patterns

Jahić J., Bauer T., Kuhn T., Wehn N., 

Antonino P.O. (2020) FERA: A 

Framework for Critical Assessment 

of Execution Monitoring Based 

Approaches for Finding 

Concurrency Bugs. In: Arai K., 

Kapoor S., Bhatia R. (eds) Intelligent 

Computing. SAI 2020. Advances in 

Intelligent Systems and Computing, 

vol 1228. Springer, Cham. 

https://doi.org/10.1007/978-3-030-

52249-0_5



EXECUTION 
MONITORING

Jahić J., Bauer T., Kuhn T., Wehn N., 

Antonino P.O. (2020) FERA: A 

Framework for Critical Assessment 

of Execution Monitoring Based 

Approaches for Finding 

Concurrency Bugs. In: Arai K., 

Kapoor S., Bhatia R. (eds) Intelligent 

Computing. SAI 2020. Advances in 

Intelligent Systems and Computing, 

vol 1228. Springer, Cham. 

https://doi.org/10.1007/978-3-030-

52249-0_5



EXECUTION 
MONITORING: 
PRECISION

Jahić J., Bauer T., Kuhn T., Wehn N., 

Antonino P.O. (2020) FERA: A 

Framework for Critical Assessment 

of Execution Monitoring Based 

Approaches for Finding 

Concurrency Bugs. In: Arai K., 

Kapoor S., Bhatia R. (eds) Intelligent 

Computing. SAI 2020. Advances in 

Intelligent Systems and Computing, 

vol 1228. Springer, Cham. 

https://doi.org/10.1007/978-3-030-

52249-0_5



CODE 
COVERAGE 

METRICS
• Statement

• Condition

• Decision

• MC/DC

if(condition1 operator1 condition2 operator2 condition3   if( ((a>10) AND (b==0)) OR (c=127))

Logical condition Logical operator

Logical decision

Logical condition Logical operator

Logical decision

Hayhurst Kelly J., Veerhusen Dan 

S., Chilenski John J., and Rierson

Leanna K. 2001. A Practical 

Tutorial on Modified 

Condition/Decision Coverage. 

Technical Report. NASA Langley 

Technical Report Server



CODE 
COVERAGE OF 

INTERLEAVINGS
???

• Random delays

• Targeted interleavings -> targeted delays

thread1

thread2

R(S)

CPU
CORE 1: 
thread1

CORE 2: 
thread2

100+100

S

W(S)

R(S) 200-50 W(S)

thread1

thread2

R(S) W(S)

R(S) 100-50 W(S)

S 100 100 200 200 200 150

S 100 100 200 200 200 50

100+100

thread1

thread2

R(S) W(S)

S 100 100 200 200

100+100LOCK

LOCK WAIT

UNLOCK

R(S) 200-50 W(S)

200 150



ERASER 
LOCKSET 

ALGORITHM

Variable(A) Variable(B) ...List of variables:

Threads: T2 ...
all locks currently held locks

T1

currently held locks

candidate set candidate set

Lockset state  
memory model

Lockset state  
memory model

Eraser Lockset 
algorithm

set()

set()

Exclusive

Shared Shared-Modified

read, new thead write, new thread

Virgin read/write,
first thread

read

read,
 first thread

write, new thread

t1:R(100) t1:W(200)t1:100+100t1:LOCK t1:UNLOCKt2:LOCK t2:R(200)



ATOMICITY 
VIOLATION 
EXAMPLE

• t1:

• …

• lock();

• object=new O();

• unlock()

• …

• …

• lock();

• object.method1();

• unlock()

• t2:

• …

• lock();

• object=NULL;

• unlock()

• …



PROPER 
SYNCHRONISATION

• t1:

• …

• lock();

• account-=a;

• unlock()

• …

• …

• lock();

• account-=c;

• unlock()

• t2:

• …

• lock();

• account+=b;

• unlock()

• …

Shan Lu, Joseph Tucek, Feng Qin, and 

Yuanyuan Zhou. 2006. AVIO: detecting 

atomicity violations via access 

interleaving invariants. SIGPLAN Not. 

41, 11 (November 2006), 37–48. 

DOI:https://doi.org/10.1145/1168918.

1168864



FINDING 
CONCURRENCY 

BUGS: LOCKING (LB) 
AND NON-
BLOCKING 

SYNCHRONIZATION 
(LF) 

▪ Simple code (https://github.com/KhuramAli/JAM-Benchmark)

▪ MultiProducer/Multi-Consumer pattern (MPMC)

▪ SingleProducer/Multiple-Consumer Ring Buffer (SPMCR)

▪ Sum Counter (SC) 

▪ - crash

J. Jahić, K. Ali, M. Chatrangoon, and N. 

Jahani. 2019. (Dis)Advantages of Lock-free 

Synchronization Mechanisms for Multicore 

Embedded Systems. International 

Conference on Parallel Processing: 

Workshops (ICPP 2019) DOI: 

https://doi.org/10.1145/3339186.3339191

Applic

ation

#thre

ads

Helgrind ThreadSanitizer

#reported 

bugs

#false 

positives

#reported 

bugs

#false 

positives

MPMC_

LB

8 0-1 0-1 1 1

MPMC_

LF

8 - - 9-11 9-11

SPMCR

_LF

4 1156-1230 1156-1230 1 1

SPMCR

_LB

4 0 0 0 0

SC_LB 4 - - 0 0

SC_LF 4 0 0 0 0



CHALLENGES 
WITH FINDING 

CONCURRENCY 
BUGS

• Unknown:

• Shared memory locations

• Used synchronisation

• Testing: to prove presence of bugs

• Static analysis: to prove absence of bugs

• Find violations of sequential intentions, BUT

• How to detect/learn the intentions?

J. Jahić, V. Kumar, P. O. Antonino and 

G. Wirrer, "Testing the 

Implementation of Concurrent 

AUTOSAR Drivers Against 

Architecture Decisions," 2019 IEEE 

International Conference on 

Software Architecture (ICSA), 

Hamburg, Germany, 2019, pp. 171-

180, doi: 10.1109/ICSA.2019.00026.



TOOLS FOR 
FINDING 

CONCURRENCY 
BUGS

• Many and few

• Many prototypes

• Few available, semi-mature tools

• Helgrind - www.valgrind.org/

• ThreadSanitizer -

https://clang.llvm.org/docs/ThreadSanitizer.html

• …

• Execution tracing:

• PIN -

https://software.intel.com/content/www/us/en/dev

elop/articles/pin-a-dynamic-binary-

instrumentation-tool.html

• DynamoRIO - https://dynamorio.org/



INDUSTRIAL 
EXPERIENCE 

WITH TESTING 
TOOLS

• Changes that tools introduce to software:

• Change CMake and Make files

• Works only with some compilers and their specific flags

• Limited to 64bit software

• Sometimes necessary to change source code

• Almost always intrusive execution

• No code coverage quantification

• False positives (user-defined synchronisation)

• Tool chain is usually a design decision in embedded 

systems - no changes allowed.

Continuous Testing Approach for 

Finding Data Races in Linux-based 

Industrial Embedded Systems, 

Volkan Doganci, 2020; TU 

Kaiserslautern & Siemens



FROM DRIVERS TO SOLUTIONS

Categorization Responsibilities

Driver ID Promotor

Driver Name Sponsor

Status Author

Priority Inspector

Description Quantification

Environment

Stimulus

Response

Decision Name

Decision ID

Pros Cons & Risks

Assumptions Trade-offs

Manifestation 

Links

x Architecture Drivers (Input) y Decision Rationales (Output)

1:1

n:m

x Driver Solution (Output)

Driver Name

Driver ID

Related Decisions

Steps

Pros Cons & Risks

Assumptions Trade-offs

User Interface

Services

Domain Logic

Data Management

z Architecture Diagrams (Output)

n:m

Pragmatic 

Evaluation of 

Software 

Architectures, Jens 

Knodel and Matthias 

Naab, 2016



SOLUTION ADEQUACY CHECK

Strength, Weakness, 
Opportunities, and 

Threats (SWOT) 
analysis.

Architecture Trade-
off Analysis Method 

(ATAM).

Rapid Architecture 
Evaluation (RATE) 

method.



SWOT ANALYSIS

Helpful Harmful

Internal
origin 

External 
origin

to achieving the objective to achieving the objective

attributes of the 
organisation

attributes of the 
environment

S
Strengths

W
Weaknesses

O T
Opportunities Threats



ATAM

• Presentation of ATAM, business goals, and proposed architecture for 

addressing business goals; 

• Investigation and analysis of system's quality properties, including analysis 

of trade-offs; 

• Testing of the system's quality properties, with test case scenarios, for 

uncovering additional risks, sensitivity points, and trade-off points;

• Reporting of the findings from the previous steps

The architecture tradeoff analysis method, Rick Kazman et al., 1998



RATE

Pragmatic 

Evaluation of 

Software 

Architectures, Jens 

Knodel and Matthias 

Naab, 2016

• Driver Integrity Check (DIC) - reveal unclear architecture drivers, and 

formulate them systematically using architecture scenarios. 

• Requirements, architecture documentation, stakeholders, and evaluators.

• Solution Adequacy Check (SAC) - if architectural solutions at hand are 

adequate for the architecture drivers, 

• Confidence in the adequacy, following the same procedure as DIC.

• Quantification of architectural decisions

Rationale (Pros, Advantages) Assumptions & Risks (Constraints)

... ...

Scaling Factors Trade-offs

... ...



SUMMARY

• Drivers:

• Execution time 

• Redundancy (availability, reliability)

• Power consumption

• Choosing multicores, concurrency, and multithreading to 

fulfil drivers is a complex decision:

• Too many implications

• Too many uncertainties

• Hard to predict the outcome

• Hard to program the design

• Problem with threads: no interfaces – implicit coupling

• Hard to test it

• What are assumptions about sequential executions?
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