
HANDLING
CONCURRENCY IN

EMBEDDED SOFTWARE
SYSTEMS FROM

ARCHITECTURAL POINT
OF VIEW: PART 3

JASMIN JAHIĆ, SIMON BARNER

jj542@cam.ac.uk

barner@fortiss.org

https://jahic.github.io/hipeac2021

09:30 - 13:00, 18.01.2021,

BUDAPEST, HUNGARY

https://jahic.github.io/hipeac2021

AGENDA

Session 1: Fundamental Issues with
Concurrency in Embedded Software
Systems from Architectural Point of View

Session 2: Modelling and DSE Methods
for Mixed-Critical Software Systems
using Multicore Architectures

Session 3: Synchronization in
Concurrent Software is an Architectural
Decision

10:30

11:45

10:45

9:30

12:00

13:00

SESSION 3

Beyond the “problem with threads”

Synchronisation mechanisms

Concurrency bugs

Testing concurrent software - finding
concurrency bugs

12:00

12:45

SPEEDUP OF A
SINGLE TASK

ID 006 Status

Name … Owner

Quality Average case execution time – single task –

partitioning – dependencies, shared memory

Stakeholders

Quantification

Environment Task is executing on a CPU Execution time = t; #cores>1

Stimulus Partition the task into threads #treads>1, set#4 params, set#3

params

Response Significantly reduced (by factor k) execution time Execution time = t/k

Set#3

Core affinity

Scheduling policy

Interrupts

Set#4

Ways and means to partition software -
partitioning strategy

Thread start-up time

Synchronisation

Liveness

Concurrency bugs

Bugs that exist on execution paths possible
only because of concurrency

CONCURRENCY
BUG EXAMPLE

thread1

thread2

R(S)

CPU
CORE 1:
thread1

CORE 2:
thread2

100+100

S

W(S)

R(S) 200-50 W(S)

thread1

thread2

R(S) W(S)

R(S) 100-50 W(S)

S 100 100 200 200 200 150

S 100 100 200 200 200 50

100+100

thread1

thread2

R(S) W(S)

S 100 100 200 200

100+100LOCK

LOCK WAIT

UNLOCK

R(S) 200-50 W(S)

200 150

THE PROBLEM
WITH THREADS

• “They (threads) discard the most essential and

appealing properties of sequential computation:

understandability, predictability, and

determinism.” [1]

• “Nondeterminism should be explicitly and

judiciously introduced where needed, rather

than removed where not needed. “[1]

• “humans are quickly overwhelmed by

concurrency and find it much more difficult to

reason about concurrent than sequential code.

Even careful people miss possible interleavings

among even simple collections of partially

ordered operations.” [2]

[1] Edward A. Lee. 2006. The Problem

with Threads. Computer 39, 5 (May

2006), 33–42. DOI:

https://doi.org/10.1109/MC.2006.180

[2] H. Sutter and J. Larus. Software and

the concurrency revolution. ACM

Queue, 3(7), 2005.

https://doi.org/10.1109/MC.2006.180

THE PROBLEM
WITH THREADS

• Given a program and an initial state, any two programs p and p’

(that compute the same function) can be compared. They are

equivalent if they halt for the same initial states, and for such

initial states, their final state is the same.

• Assume that p1 and p2 execute concurrently in a multithreaded

fashion. Pair (p1, p2) is equivalent to (p'1, p'2) if all interleavings

halt for the same initial state and yield the same final state.

• BONUS: we have to know about all other threads that might

execute.

• #threads n, #instructions i;

• "with threads, there is no useful theory of equivalence“ [1]

• "achieving reliability and predictability using threads is

essentially impossible for many applications“ [1]

• “to replace the conventional metaphor a sequence of steps with

the notion of a community of interacting entities” [3]

[1] Edward A. Lee. 2006. The Problem

with Threads. Computer 39, 5 (May

2006), 33–42. DOI:

https://doi.org/10.1109/MC.2006.180

[3] L. A. Stein. Challenging the

computational metaphor:

Implications for how we think.

Cybernetics and Systems, 30(6),

1999

#interleavings = 𝟐𝒏∗𝒊

https://doi.org/10.1109/MC.2006.180

ARCHITECTURAL
PATTERNS AND
ANTI-PATTERNS

▪ Patterns: Reuse previous knowledge

▪ Problem; Solution; Advantages; Disadvantages

▪ Anti-patterns: Avoid, bad smells, technical debt

▪ Design; Threshold; Severity

▪ Unstable dependency: A subsystem (component)

that depends on other subsystems that are less

stable, with a possible ripple effect of changes in

the project.

▪ Cyclic dependency (CD): A subsystem

(component) that is involved in a chain of relations

that break the desirable acyclic nature of a

subsystem dependency structure.

▪ Hotspot Patterns: Implicit Cross-Module

Dependency, Cross-Module Cycle, and Cross

Package Cycle.

Software Architecture

Measurement—Experiences from a

Multinational Company, W. Wu, Y. Cai,

R. Kazman et al., ECSA 2018

THREADS FROM
SOFTWARE

ARCHITECTURE
PERSPECTIVE

• Cohesion: the degree to which the elements inside a

module belong (logically) together

• Coupling: A measurement of interdependence

between components.

• Data coupling, control coupling, temporal coupling...

• Example: Does one component need to understand

what is happening in other component in order to use

it?

• Usual goals: High cohesion and low coupling

• Threads are implicitly coupled:

• Directly: One thread needs to know how all other

threads access shared resources

• Indirectly: Shared hardware

• The problem with threads: there are no interfaces for

accessing shared memory – not transparent at all [1]

[1] J. Jahić, V. Kumar, P. O. Antonino and G.

Wirrer, "Testing the Implementation of

Concurrent AUTOSAR Drivers Against

Architecture Decisions," 2019 IEEE

International Conference on Software

Architecture (ICSA), Hamburg, Germany,

2019, pp. 171-180, doi:

10.1109/ICSA.2019.00026.

SYNCHRONISATION
MECHANISMS

Repeating scheduling cycle

T1

shared(A)CORE 1 CORE 2

T2

LOCK(A)

LOCK(A)

WAIT (A)

WORK

UNLOCK(A)

a) Lock

WORK

UNLOCK(A)

T1

barrier(A)CORE 1 CORE 2

T2

BARRIER(A)

WORK

b) Barrier

BARRIER(A)

CONTINUE

T1

shared(A)CORE 1 CORE 2

T2

SLEEP()
sleep()

c) Inter-thread synchronization

access(A)

notify()

CONTINUE

T1 T5

T2 T4

T3

T2 T4

T3

A B D B E C A DB ED

CORE 1

CORE 2

...

...

e) Pre-defined cyclic scheduling with pre-conditions and timing barriers

T1

Condition variable (condVar), lockCORE 1 CORE 2

T2

LOCK(lock)
while (condVar.isTrue()) {...}

LOCK(lock)
while (condVar.isFalse()) {

d) Monitors with condition variables

WORK

SIGNAL(condVar)
UNLOCK(lock)

CONTINUE

wait(lock, condVar); }

WORK

Preconditions, one thread starts only when
previous completes.

Threads have reserved execution time slots.
Even if they complete earlier, they will wait for
the time to elapse.

WAIT (A)

WORK

LOGICAL
EXECUTION
TIME (LET)

SCHEDULING

• Taming concurrency non-determinism

• Program reads input in zero time

• Program executes

• Program writes output in zero time

• Execution time = LET

• “if the program completes execution before the

deadline, writing output is delayed until the deadline,

i.e., until the LET has elapsed”

• The LET deadline is an upper bound, but also a lower

bound, at least, logically.

• “In the LET model, using a faster machine does therefore

not result in (logically) faster program execution but only

in decreased machine utilization”

Kirsch C.M., Sokolova A. (2012) The

Logical Execution Time Paradigm. In:

Chakraborty S., Eberspächer J. (eds)

Advances in Real-Time Systems.

Springer, Berlin, Heidelberg.

https://doi.org/10.1007/978-3-642-

24349-3_5

NON-BLOCKING
SYNCHRONIZATION

▪ Atomic Compare and Swap (CAS)

▪ Load Linked, Store Conditional (LL/SC)

▪ Data structures:

▪ Ring

▪ Buffer

▪ Queue

NON-BLOCKING
SYNCHRONIZATION

▪ Simple code (https://github.com/KhuramAli/JAM-

Benchmark)

▪ Multi-Producer/Multi-Consumer pattern (MPMC)

▪ Producers = 4; Consumers = 4;

▪ Single-Producer/Single-Consumer Ring Buffer (SPSC)

▪ Each test executed 1000 times

▪ Lock based (LB): std::mutex.lock(); std:: mutex.unlock();

▪ Lock free (LF): boost::lockfree::queue

J. Jahić, K. Ali, M. Chatrangoon, and N.

Jahani. 2019. (Dis)Advantages of Lock-free

Synchronization Mechanisms for Multicore

Embedded Systems. International

Conference on Parallel Processing:

Workshops (ICPP 2019) DOI:

https://doi.org/10.1145/3339186.3339191

0

2000

4000

6000

8000

10000

12000

Minimum [ms] Average [ms] Maximum [ms]

MPMC_LB _boost MPMC_LF _boost

0

1000

2000

3000

4000

5000

6000

7000

8000

Minimum [ms] Average [ms] Maximum [ms]

SPSC_LB _boost SPSC_LF _boost

CONCURRENCY
BUGS

T1
LOCK

B=SCRIPT;
UNLOCK

LOCK
B.EXEC()
UNLOCK

Variable(B)CORE 1 CORE 2

T2

LOCK(B)

WAIT

B = SCRIPT

B=NULL

b) Atomicity violation (race free) -
Programmers expect that some code
regions will execute atomically.

LOCK(B)
B.EXEC()

UNLOCK(B)

UNLOCK(B)

T1

Variable(B)= NULLCORE 1 CORE 2

T2

LOCK(B)
B.COMPILE()
UNLOCK(B)

c) Order violation bugs - occur when the intended order
between two operations (e.g., initialization is expected to
execute before compile) is flipped. It is expected that T1 will
first initialize variable B.

LOCK(B)
B = SCRIPT
UNLOCK(B)

T1

Variable(B)CORE 1 CORE 2

T2
LOCK(B)

WAIT(B)

d) Priority inversion – Priorities (T2>T3>T1). T2 can
make T1 to release the lock on lock on B. However,
T1 has been already preempted by T3. Now T2 waits
on T3 and T1, but it has a higher priority then both.

T3

T1

Locks(A, B)CORE 1 CORE 2

T2

LOCK A

LOCK B

WAIT (B)

WAIT (A)

f) Deadlock

T1

Variables(A, B)CORE 1 CORE 2

T2

LOCK(A)

LOCK(B)

WAIT (B)

WAIT (A)

DO SOMETHING

DO SOMETHING

WAIT (B)

WAIT (A)

g) Livelock - states of the threads involved in the
livelock constantly change with regard to one
another. However, none is progressing.

T1

SchedulerCORE 1 CORE 2

T2

Scheduled

WORK

Complete

h) Starvation - Thread T2 has a higher priority. The
scheduler never schedules the T1 for execution.

T1

B {TARGET_SPEED,
ENGINE_ON}

CORE 1 CORE 2

T2

LOCK(B)
B.TARGET_SPEED = 0

UNLOCK(B)

LOCK(B)
B.ENGINE_ON = TRUE

UNLOCK(B)

e) Multivariable concurrency bugs –
logical inconsistency. B is a structure.

LOCK(B)
B.TARGET_SPEED = 50

UNLOCK(B)

LOCK(B)
B.ENGINE_ON = FALSE

UNLOCK(B)

TARGET_SPEED = 50
ENGINE_ON=FALSE

Scheduled

WORK

Complete

Scheduled

WORK

Complete

a) Data races

T1

Variable(B)CORE 1 CORE 2

T2

READ(B)

READ(B)

T2 operates on
outdated B value

WRITE(B)

(OVER)
WRITE(B)T2

ATOMICITY
VIOLATION
EXAMPLE

• t1:

• …

• lock();

• object=new O();

• unlock()

• …

• …

• lock();

• object.method1();

• unlock()

• t2:

• …

• lock();

• object=NULL;

• unlock()

• …

CONCURRENCY
BUGS

T1
LOCK

B=SCRIPT;
UNLOCK

LOCK
B.EXEC()
UNLOCK

Variable(B)CORE 1 CORE 2

T2

LOCK(B)

WAIT

B = SCRIPT

B=NULL

b) Atomicity violation (race free) -
Programmers expect that some code
regions will execute atomically.

LOCK(B)
B.EXEC()

UNLOCK(B)

UNLOCK(B)

T1

Variable(B)= NULLCORE 1 CORE 2

T2

LOCK(B)
B.COMPILE()
UNLOCK(B)

c) Order violation bugs - occur when the intended order
between two operations (e.g., initialization is expected to
execute before compile) is flipped. It is expected that T1 will
first initialize variable B.

LOCK(B)
B = SCRIPT
UNLOCK(B)

T1

Variable(B)CORE 1 CORE 2

T2
LOCK(B)

WAIT(B)

d) Priority inversion – Priorities (T2>T3>T1). T2 can
make T1 to release the lock on lock on B. However,
T1 has been already preempted by T3. Now T2 waits
on T3 and T1, but it has a higher priority then both.

T3

T1

Locks(A, B)CORE 1 CORE 2

T2

LOCK A

LOCK B

WAIT (B)

WAIT (A)

f) Deadlock

T1

Variables(A, B)CORE 1 CORE 2

T2

LOCK(A)

LOCK(B)

WAIT (B)

WAIT (A)

DO SOMETHING

DO SOMETHING

WAIT (B)

WAIT (A)

g) Livelock - states of the threads involved in the
livelock constantly change with regard to one
another. However, none is progressing.

T1

SchedulerCORE 1 CORE 2

T2

Scheduled

WORK

Complete

h) Starvation - Thread T2 has a higher priority. The
scheduler never schedules the T1 for execution.

T1

B {TARGET_SPEED,
ENGINE_ON}

CORE 1 CORE 2

T2

LOCK(B)
B.TARGET_SPEED = 0

UNLOCK(B)

LOCK(B)
B.ENGINE_ON = TRUE

UNLOCK(B)

e) Multivariable concurrency bugs –
logical inconsistency. B is a structure.

LOCK(B)
B.TARGET_SPEED = 50

UNLOCK(B)

LOCK(B)
B.ENGINE_ON = FALSE

UNLOCK(B)

TARGET_SPEED = 50
ENGINE_ON=FALSE

Scheduled

WORK

Complete

Scheduled

WORK

Complete

a) Data races

T1

Variable(B)CORE 1 CORE 2

T2

READ(B)

READ(B)

T2 operates on
outdated B value

WRITE(B)

(OVER)
WRITE(B)T2

BUGS CAUSED BY
CONCURRENCY

• t1:

• lock(); a=10; unlock();

• lock();

• if(a!=10) { b=9; }

• else { b=10; }

• unlock();

• …

• lock();

• if(a==10) { c=1/(b-9); }

• unlock();

• t2:

• lock(); a=10; unlock();

a - shared variable

SYNCHRONIZATION
MECHANISMS AS
ARCHITECTURAL DECISIONS

FINDING
CONCURRENCY

BUGS

• Violation of synchronisation (atomicity)

intentions

• Memory shared between threads

• Synchronisation mechanisms used by threads

• How to know developers’ intentions?

FINDING
CONCURRENCY

BUGS

• Static analysis

• Dynamic analysis (runtime monitoring)

• Testing

• Model checking

PreprocessorSoftware
Specification

f

Model
Checker

True or
False

class Overview Find Concurrency Bugs Concept

«Functional Data Port» Set

Executable Test Case

«Functional Data Port»

Software Execution

Trace

Execute Software

«Functional Data Port» Set

Executable Test Case

«Functional Data Port»

Software Execution

Trace

«Functional Data Port»

Execute Test Case

«Functional Data Port» Software

Execution Trace

Find Concurrency Bugs

«Functional Data Port»

Execute Test Case

«Functional Data Port» Software

Execution Trace

«Functional Data» Test Case

«Functional Data» Software

Execution Report

int sum = 100;

 reportInst()

thread1(100);

thread2(5);

void thread1(int a){

 reportInst()

Analysis algorithm

EXECUTION
MONITORING

class Find Concurrency Bugs Concept

Software

Execution

Trace

Set Executable

Test Case

Execute Software

Software

Execution

Trace

Set Executable

Test Case

Execute

Test

Case

Software Execution Trace

Add Concurrency Bug Pattern Add Synchronization

Primitive Pattern

Update Coverage

Report

Add Synchronization

Intention

Generate Concurrency

Report

Find Concurrency Bugs

Execute

Test

Case

Software Execution Trace

Add Concurrency Bug Pattern Add Synchronization

Primitive Pattern

Update Coverage

Report

Add Synchronization

Intention

Generate Concurrency

Report

Report Control Flow Graph

Coverage

Report

Add Execution Trace
Quantify Coverage

Report Control Flow Graph

Coverage

Report

Add Execution Trace

Software Static

Structure

Extract Software

Static Structure

Software Static

Structure

Lockset

Update

Concurrency Bugs

Report

Report Concurrency

Bugs

Update

Concurrency Bugs

Report

Update Coverage

Report

Coverage Report

Report Coverage

Update Coverage

Report

Coverage Report

Concurrency Bug

Patterns

Model Concurrency Bugs

Concurrency Bug

Patterns
Synchronization Primitive

Patterns

Model Synchronization

Primitives

Synchronization Primitive

Patterns
Synchronization

Intentions

Specify Synchronization

Intentions

Synchronization

Intentions

Execution

Monitoring

Test Case

Interactive Visualization::

SelectTest CaseTest Case

Software

Coverage

Report

Test Case

Software

Execution

Report

Software

Static

Structure

Concurrency Bug

Patterns

Software

Execution

Report

Software

Coverage

Report

Software

Synchronization

Intentions

Concurrency

Analysis

Report

Test Case

Synchronization

Primitive Patterns

Jahić J., Bauer T., Kuhn T., Wehn N.,

Antonino P.O. (2020) FERA: A

Framework for Critical Assessment

of Execution Monitoring Based

Approaches for Finding

Concurrency Bugs. In: Arai K.,

Kapoor S., Bhatia R. (eds) Intelligent

Computing. SAI 2020. Advances in

Intelligent Systems and Computing,

vol 1228. Springer, Cham.

https://doi.org/10.1007/978-3-030-

52249-0_5

EXECUTION
MONITORING

Jahić J., Bauer T., Kuhn T., Wehn N.,

Antonino P.O. (2020) FERA: A

Framework for Critical Assessment

of Execution Monitoring Based

Approaches for Finding

Concurrency Bugs. In: Arai K.,

Kapoor S., Bhatia R. (eds) Intelligent

Computing. SAI 2020. Advances in

Intelligent Systems and Computing,

vol 1228. Springer, Cham.

https://doi.org/10.1007/978-3-030-

52249-0_5

EXECUTION
MONITORING:
PRECISION

Jahić J., Bauer T., Kuhn T., Wehn N.,

Antonino P.O. (2020) FERA: A

Framework for Critical Assessment

of Execution Monitoring Based

Approaches for Finding

Concurrency Bugs. In: Arai K.,

Kapoor S., Bhatia R. (eds) Intelligent

Computing. SAI 2020. Advances in

Intelligent Systems and Computing,

vol 1228. Springer, Cham.

https://doi.org/10.1007/978-3-030-

52249-0_5

CODE
COVERAGE

METRICS
• Statement

• Condition

• Decision

• MC/DC

if(condition1 operator1 condition2 operator2 condition3 if(((a>10) AND (b==0)) OR (c=127))

Logical condition Logical operator

Logical decision

Logical condition Logical operator

Logical decision

Hayhurst Kelly J., Veerhusen Dan

S., Chilenski John J., and Rierson

Leanna K. 2001. A Practical

Tutorial on Modified

Condition/Decision Coverage.

Technical Report. NASA Langley

Technical Report Server

CODE
COVERAGE OF

INTERLEAVINGS
???

• Random delays

• Targeted interleavings -> targeted delays

thread1

thread2

R(S)

CPU
CORE 1:
thread1

CORE 2:
thread2

100+100

S

W(S)

R(S) 200-50 W(S)

thread1

thread2

R(S) W(S)

R(S) 100-50 W(S)

S 100 100 200 200 200 150

S 100 100 200 200 200 50

100+100

thread1

thread2

R(S) W(S)

S 100 100 200 200

100+100LOCK

LOCK WAIT

UNLOCK

R(S) 200-50 W(S)

200 150

ERASER
LOCKSET

ALGORITHM

Variable(A) Variable(B) ...List of variables:

Threads: T2 ...
all locks currently held locks

T1

currently held locks

candidate set candidate set

Lockset state
memory model

Lockset state
memory model

Eraser Lockset
algorithm

set()

set()

Exclusive

Shared Shared-Modified

read, new thead write, new thread

Virgin read/write,
first thread

read

read,
 first thread

write, new thread

t1:R(100) t1:W(200)t1:100+100t1:LOCK t1:UNLOCKt2:LOCK t2:R(200)

ATOMICITY
VIOLATION
EXAMPLE

• t1:

• …

• lock();

• object=new O();

• unlock()

• …

• …

• lock();

• object.method1();

• unlock()

• t2:

• …

• lock();

• object=NULL;

• unlock()

• …

PROPER
SYNCHRONISATION

• t1:

• …

• lock();

• account-=a;

• unlock()

• …

• …

• lock();

• account-=c;

• unlock()

• t2:

• …

• lock();

• account+=b;

• unlock()

• …

Shan Lu, Joseph Tucek, Feng Qin, and

Yuanyuan Zhou. 2006. AVIO: detecting

atomicity violations via access

interleaving invariants. SIGPLAN Not.

41, 11 (November 2006), 37–48.

DOI:https://doi.org/10.1145/1168918.

1168864

FINDING
CONCURRENCY

BUGS: LOCKING (LB)
AND NON-
BLOCKING

SYNCHRONIZATION
(LF)

▪ Simple code (https://github.com/KhuramAli/JAM-Benchmark)

▪ MultiProducer/Multi-Consumer pattern (MPMC)

▪ SingleProducer/Multiple-Consumer Ring Buffer (SPMCR)

▪ Sum Counter (SC)

▪ - crash

J. Jahić, K. Ali, M. Chatrangoon, and N.

Jahani. 2019. (Dis)Advantages of Lock-free

Synchronization Mechanisms for Multicore

Embedded Systems. International

Conference on Parallel Processing:

Workshops (ICPP 2019) DOI:

https://doi.org/10.1145/3339186.3339191

Applic

ation

#thre

ads

Helgrind ThreadSanitizer

#reported

bugs

#false

positives

#reported

bugs

#false

positives

MPMC_

LB

8 0-1 0-1 1 1

MPMC_

LF

8 - - 9-11 9-11

SPMCR

_LF

4 1156-1230 1156-1230 1 1

SPMCR

_LB

4 0 0 0 0

SC_LB 4 - - 0 0

SC_LF 4 0 0 0 0

CHALLENGES
WITH FINDING

CONCURRENCY
BUGS

• Unknown:

• Shared memory locations

• Used synchronisation

• Testing: to prove presence of bugs

• Static analysis: to prove absence of bugs

• Find violations of sequential intentions, BUT

• How to detect/learn the intentions?

J. Jahić, V. Kumar, P. O. Antonino and

G. Wirrer, "Testing the

Implementation of Concurrent

AUTOSAR Drivers Against

Architecture Decisions," 2019 IEEE

International Conference on

Software Architecture (ICSA),

Hamburg, Germany, 2019, pp. 171-

180, doi: 10.1109/ICSA.2019.00026.

TOOLS FOR
FINDING

CONCURRENCY
BUGS

• Many and few

• Many prototypes

• Few available, semi-mature tools

• Helgrind - www.valgrind.org/

• ThreadSanitizer -

https://clang.llvm.org/docs/ThreadSanitizer.html

• …

• Execution tracing:

• PIN -

https://software.intel.com/content/www/us/en/dev

elop/articles/pin-a-dynamic-binary-

instrumentation-tool.html

• DynamoRIO - https://dynamorio.org/

INDUSTRIAL
EXPERIENCE

WITH TESTING
TOOLS

• Changes that tools introduce to software:

• Change CMake and Make files

• Works only with some compilers and their specific flags

• Limited to 64bit software

• Sometimes necessary to change source code

• Almost always intrusive execution

• No code coverage quantification

• False positives (user-defined synchronisation)

• Tool chain is usually a design decision in embedded

systems - no changes allowed.

Continuous Testing Approach for

Finding Data Races in Linux-based

Industrial Embedded Systems,

Volkan Doganci, 2020; TU

Kaiserslautern & Siemens

FROM DRIVERS TO SOLUTIONS

Categorization Responsibilities

Driver ID Promotor

Driver Name Sponsor

Status Author

Priority Inspector

Description Quantification

Environment

Stimulus

Response

Decision Name

Decision ID

Pros Cons & Risks

Assumptions Trade-offs

Manifestation

Links

x Architecture Drivers (Input) y Decision Rationales (Output)

1:1

n:m

x Driver Solution (Output)

Driver Name

Driver ID

Related Decisions

Steps

Pros Cons & Risks

Assumptions Trade-offs

User Interface

Services

Domain Logic

Data Management

z Architecture Diagrams (Output)

n:m

Pragmatic

Evaluation of

Software

Architectures, Jens

Knodel and Matthias

Naab, 2016

SOLUTION ADEQUACY CHECK

Strength, Weakness,
Opportunities, and

Threats (SWOT)
analysis.

Architecture Trade-
off Analysis Method

(ATAM).

Rapid Architecture
Evaluation (RATE)

method.

SWOT ANALYSIS

Helpful Harmful

Internal
origin

External
origin

to achieving the objective to achieving the objective

attributes of the
organisation

attributes of the
environment

S
Strengths

W
Weaknesses

O T
Opportunities Threats

ATAM

• Presentation of ATAM, business goals, and proposed architecture for

addressing business goals;

• Investigation and analysis of system's quality properties, including analysis

of trade-offs;

• Testing of the system's quality properties, with test case scenarios, for

uncovering additional risks, sensitivity points, and trade-off points;

• Reporting of the findings from the previous steps

The architecture tradeoff analysis method, Rick Kazman et al., 1998

RATE

Pragmatic

Evaluation of

Software

Architectures, Jens

Knodel and Matthias

Naab, 2016

• Driver Integrity Check (DIC) - reveal unclear architecture drivers, and

formulate them systematically using architecture scenarios.

• Requirements, architecture documentation, stakeholders, and evaluators.

• Solution Adequacy Check (SAC) - if architectural solutions at hand are

adequate for the architecture drivers,

• Confidence in the adequacy, following the same procedure as DIC.

• Quantification of architectural decisions

Rationale (Pros, Advantages) Assumptions & Risks (Constraints)

... ...

Scaling Factors Trade-offs

... ...

SUMMARY

• Drivers:

• Execution time

• Redundancy (availability, reliability)

• Power consumption

• Choosing multicores, concurrency, and multithreading to

fulfil drivers is a complex decision:

• Too many implications

• Too many uncertainties

• Hard to predict the outcome

• Hard to program the design

• Problem with threads: no interfaces – implicit coupling

• Hard to test it

• What are assumptions about sequential executions?

COOPERATION AND
FURTHER

COMMUNICATION

• jj542@cam.ac.uk

• barner@fortiss.org

QUESTIONS

Session 1: Fundamental Issues with
Concurrency in Embedded Software
Systems from Architectural Point of View

Session 2: Modelling and DSE Methods
for Mixed-Critical Software Systems
using Multicore Architectures

Session 3: Synchronization in
Concurrent Software is an Architectural
Decision

10:30

11:45

10:45

9:30

12:00

13:00

