
HANDLING
CONCURRENCY IN
HETEROGENEOUS

EMBEDDED SOFTWARE
SYSTEMS FROM

ARCHITECTURAL POINT
OF VIEW: PART 1

JASMIN JAHIĆ, VICTOR PEREZ,

JOE TODD

jj542@cam.ac.uk - jahic.github.io

victor.perez@codeplay.com

joe.todd@codeplay.com

14:00 - 17:30, 16.01.2023,

TOULOUSE, FRANCE

AGENDA

Session 1: Fundamental Issues with
Concurrency in Embedded Software
Systems from Architectural Point of View

Session 2: Synchronization in
Concurrent Software is an Architectural
Decision; SYCL open standard

Session 3: Harnessing performance
portability in heterogeneous
architectures using C++ and SYCL

15:00

16:15

15:15

14:00

16:30

17:30

Coffee break: 15:30 - 16:00

AGENDA

Session 1: Fundamental Issues with
Concurrency in Embedded Software
Systems from Architectural Point of View

Session 2: Synchronization in
Concurrent Software is an Architectural
Decision; SYCL open standard

Session 3: Harnessing performance
portability in heterogeneous
architectures using C++ and SYCL

15:00

16:15

15:15

14:00

16:30

17:30

Coffee break: 15:30 - 16:00

SESSION 1

Introduction to the topic

Understand the basics of software system
architecture

Understand the basics of computing laws
and how they relate to architecture topic

Understand important architectural
properties of embedded systems affected
by introducing concurrency

14:00

15:00

LITERATURE

• [1] The Free Lunch Is Over: A Fundamental Turn Toward Concurrency in Software, Dr.

Dobb's Journal, 30(3), March 2005

• [2] Software Architecture in Practice, Len Bass, Paul Clements, Rick Kazman, 3rd

edition, 2012

• [3] Pragmatic Evaluation of Software Architectures, J. Knodel, M. Naab, 2016

• [4] G. M. Amdahl, "Computer Architecture and Amdahl's Law," in Computer, vol. 46,

no. 12, pp. 38-46, Dec. 2013

• [5] A glimpse of real-time systems theory and practice in the wake of multicore

processors and mixed-criticality, Tullio Vardanega, University of Padua, Italy,

ACACES 2020, HiPEAC -

https://www.hipeac.net/acaces/2020/#/program/courses/8/

• The Art of Multiprocessor Programming, M. Herlihy, N. Shavit, 2011

• Predictable Use of Multicore in the Army and Beyond, Software Engineering Institute

| Carnegie Mellon University

https://www.youtube.com/watch?v=QI34HBJ99kA

Slides will be available at https://jahic.github.io/hipeac2023

https://www.youtube.com/watch?v=QI34HBJ99kA

MOORE’S LAW
AND DENNARD

SCALING

https://github.com/karlrupp/microprocessor-trend-data

MOORE’S LAW
AND DENNARD

SCALING

• Free lunch: Every new generation of processors would

execute with higher frequency – software execution

becomes automatically faster – is over! [1]

• Post Dennard scaling breakdown performance drivers:

• Computer architecture improvements

• Concurrency and parallelism (forced to use multicores)

• Power consumption

• Drivers for using multicores

• Improve execution time

• Improve throughput

• Redundancy (availability, reliability)

• Power consumption

• Without compromising other system quality properties

Athlon 64 X2, 2007Pentium Dual-

Core, 2007

SOFTWARE
SYSTEM

ARCHITECTURE

• “Software architecture is the structure of the

structures of the system, which comprise

software components, the externally visible

properties of those components, and the

relationships among them.” [2]

• Requirements

• Drivers

• Decisions

SOFTWARE
SYSTEM

ARCHITECTURE

Requirements

Drivers

Design space
exploration

Reasoning

Decision
making

SPECIFICATION OF ARCHITECTURE DRIVERS

Business

Natural language

Links to documents

Increase sales by
15%.

Increase a reputation.

A unique functionality.

Functionality

Use Cases

User Stories / Epics

Template scenario

User registration.

Web shop.

Constraints

Natural language

Use open source.

Use Android.

Do not use QR codes.

Quality

Template scenario

Performance,
Maintainability,
Extendibility, Safety,
Security, Accessibility,
Deplorability,
Reliability, Scalability

SOFTWARE
QUALITY

▪ ISO 26262 - Road vehicles – Functional safety

▪ ISO/IEC 25010:2011 - systems and software

quality requirements and evaluation

▪ ISO/IEC/IEEE 12207 - systems and software

engineering - software life cycle processes

▪ IEEE 730 - software quality assurance

▪ IEEE 1012 - verification and validation (V&V)

Functional suitability Performance efficiency Compatibility Usability

Functional completeness Time behaviour Co-existence Appropriateness

recognizability

Functional correctness Resource utilization Interoperability Learnability

Functional appropriateness Capacity Operability

…

QUALITY
DRIVERS

▪ Quantification of quality in a context

▪ Quality template [3]

ID Unique identifier Status

Name Name of scenario Owner

Quality Related quality attribute: exactly one attribute

should be chosen.

Stakeholders

Quantification

Environment Context applying to this scenario. May describe

both context and status of the system.

Stimulus The event or condition arising from this

scenario.

Response The expected reaction of the system to the

scenario event.

QUALITY
DRIVERS FOR

ADOPTING
MULTICORES:

SET#1

▪ Execution time

▪ Redundancy (availability, reliability)

▪ Power consumption

EXECUTION TIME:
IDEAL QUALITY
DRIVER
EXPECTATIONS

ID … Status

Name … Owner

Quality Execution time Stakeholders

Quantification

Environment Application software is executing on a

single core CPU.

#cores = 1

Execution time = t

Stimulus Migrate to a double core CPU #cores = 2

Response Reduce execution time by half. Execution time = t/2

THEORETICAL
LIMITATIONS OF
PERFORMANCE

GAINS [4]

▪ Some operations have to execute physically sequentially.

▪ “If … one decided to improve the performance by

putting two processors side by side with shared memory,

one would find approximately 2.2 times as much

hardware. The additional two-tenths in hardware

accomplish the crossbar switching for the sharing. The

resulting performance achieved would be about 1.8.

…the assumption … each processor utilizing half of the

memories about half of the time. “, ILLIAC IV computer

▪ Gene M. Amdahl. 1967. Validity of the single processor

approach to achieving large scale computing capabilities.

In Proceedings of the April 18-20, 1967, spring joint

computer conference (AFIPS '67 (Spring)). Association for

Computing Machinery, New York, NY, USA, 483–485.

THEORETICAL
LIMITATIONS OF
PERFORMANCE

GAINS

▪ Some logical problems are hard or impractical to

partition into parts that can execute concurrently.

▪ Amdahl’s law

▪ 𝑆𝑝𝑒𝑒𝑑𝑢𝑝 =
𝑆𝑒𝑞 (𝑡)

𝑃𝑎𝑟 (𝑡,𝑛)
=

𝑇𝑠+𝑇𝑝

𝑇𝑠+
𝑇𝑝
𝑛

; n – number of cores; T=1

▪
1

𝑇𝑠+
1−𝑇𝑠
𝑛

→(𝑇𝑠 = 𝑐𝑜𝑛𝑠𝑡.) → lim
𝑛→∞

1

𝑇𝑠+
𝑇𝑝
𝑛

≃
1

𝑇𝑠

▪ Assumptions:

▪ Fixed-sized problem; Tp is independent of n.

▪ The slowest task’s part limits the speedup

Execution time T

T

Parallelizable Not parallelizable – sequential only

AMDAHL’S LAW

▪ Effect of Amdahl’s law on speedup as a fraction of clock

cycle time in serial mode, John L. Hennessy and David A.

Patterson. 2019. A new golden age for computer

architecture. Commun. ACM 62, 2 (February 2019), 48–60.

DOI:https://doi.org/10.1145/3282307

▪ “For example, when only 1% of the time is serial, the

speedup for a 64-processor configuration is about 35. “

GUSTAFSON’S
LAW

▪ 𝑇 = 𝑇𝑠 + 𝑇𝑝/n;

▪ Assumptions:

▪ The problem scales with the number of available

cores (NOT fixed-sized problem)

▪ Fixed execution time

▪ Increase in throughput

▪ John L. Gustafson. 1988. Reevaluating Amdahl's

law. Commun. ACM 31, 5 (May 1988), 532–533

AMDAHL’S VS
GUSTAFSON

ASSUMPTIONS

𝐴𝑚𝑑𝑎ℎ𝑙′𝑠 𝑙𝑎𝑤

Gustafson’s 𝑙𝑎𝑤

B.H.H. Juurlink and C. H. Meenderinck.

2012. Amdahl's law for predicting the

future of multicores considered

harmful. SIGARCH Comput. Archit.

News 40, 2 (May 2012), 1–9.

DOI:https://doi.org/10.1145/2234336.

2234338

SYCL offload devices are many-

threaded*

EXECUTION TIME:
IDEAL QUALITY
DRIVER
EXPECTATIONS

ID … Status

Name … Owner

Quality Execution time Stakeholders

Quantification

Environment Application software is executing on a

single core CPU.

#cores = 1

Execution time = t

Stimulus Migrate to a double core CPU #cores = 2

Response Reduce execution time by half. Execution time = t/2

EXECUTION TIME
▪ Parallelise a single task

▪ Increase throughput

Improve

execution time

Average case

execution time

Worst case execution

time

Single task User experience Real-time constraints

Group of tasks User experience

(New features)

Real-time constraints/

Freedom from interference

Time

Frequency of
execution [app,
execution path]

Best Case
Execution Time

Worst Case
Execution Time

Upper Bound

SOFTWARE IN
EMBEDDED
SYSTEMS

...7[s] ?
...

7[s] 5[s]
...

7[s] 5[s]

WHAT COULD
POSSIBLY GO

WRONG?

Supervised Testing of Embedded

Concurrent Software, PhD thesis,

Jasmin Jahic, 2020

QUALITY
DRIVERS FOR

ADOPTING
MULTICORES:

SET#2

▪ Average execution time

▪ User experience

▪ Real-time constraints

▪ Safety-critical

▪ Do not compromise execution correctness

Improve

execution time

Average case

execution time

Worst case execution

time

Single task User experience Real-time constraints

Group of tasks New features Real-time constraints/

Freedom from interference

QUALITY
PROPERTIES

OF EMBEDDED
SYSTEMS

RELATED TO
MULTICORES

Set#1
Execution time

Redundancy (availability, reliability)

Power consumption

Set#2

Average execution time

User experience

Real-time constraints

Safety-critical

Do not compromise execution correctness

EXECUTION
TIME: SIMPLE

CASE

Core#1

EXECUTION
TIME: SIMPLE

CASE
Core#1

Core#1

L1 Cache L2 Cache

Memory bus

Translation lookaside
buffer (TLB)

Fetch Decode Execute
Memory
access

Write-back

I1

I2

I3

Pipeline and speculation

Cache replacement policy

Memory
controller

Page table

HDD/SSD

DRAM memory banksSense amplifiers

CHALLENGE:
EXECUTION
TIME

▪ CPU:

▪ Pipelines

▪ Speculation

▪ Cache behaviour

▪ Cache pre-emption

▪ Memory hierarchy

▪ …

▪ Application software

▪ Execution path - Input

▪ Design and Analysis of Time-Critical Systems, Jan

Reineke, Saarland University, Germany, Summer

School ACACES 2017

MEMORY
ACCESS

Computer architecture : a quantitative approach / John L. Hennessy, David A. Patterson.

5th edition, 2011

Patterson, D.A. & Hennessy, J.L. (2017). Computer organization and design: The

hardware/software interface RISC-V edition

SYSTEM
FUNCTIONS

https://www.absint.com/ait/gallery.htm#shot5

EXECUTION
TIME:

MULTIPLE
TASKS CASE

▪ Single core execution time: 12 [s]

▪ Dual-core execution time: 7 [s]

▪ Speedup: 1.71x

Core#1 Core#2

7[s] 5[s]

EXECUTION TIME:
MULTIPLE TASKS CASE

Memory bus

Translation lookaside
buffer (TLB)

Fetch Decode Execute
Memory
access

Write-back

I1

I2

I3

Pipeline and speculation

Cache coherence

Memory
controller

Page table

HDD/SSD

DRAM memory banksSense amplifiers

Core#1

Core#2

L1 Cache

L1 Cache

L2 Cache

Fetch Decode Execute
Memory
access

Write-back

I1

I2

I3

Pipeline and speculation

Cache replacement policy

WCET OF
TASKS ON

MULTICORES

▪ “The WCET of even the simplest single-path

program running alone on a CPU does not stay the

same when other programs run on other CPUs” [5]

Fr
eq

u
en

cy

Execution time

Single task execution time

PROARTIS: PRObabilistic

Analyzable Real Time

Systems -

www.rapitasystems.com/ab

out/research-

projects/proartis-

probabilistic-analyzable-

real-time-systems

YUN, HEECHUL.
“EVALUATING THE
ISOLATION EFFECT

OF CACHE
PARTITIONING ON
COTS MULTICORE

PLATFORMS.”
(2015).

• Intel Nehalem

• Experiments: worst-case scenarios where a task’s

execution time suffers the most slowdown due to

cache interference

• Cache sharing can cause unacceptably high

interference; the task’s execution time is

increased by 103 times due to co-runners on

different cores

*Some concurrency models take complete control of the accelerator for a given parallel task. In this case, it

might be easier to reason about and control the worst-case-execution-time (subject to interaction with its

environment)

EXECUTION
TIME:

MULTIPLE
TASKS CASE

▪ New task 3: 7 [s]

Core#1 Core#2

7[s] 5[s]

EXECUTION
TIME:

MULTIPLE
TASKS CASE

▪ Single core execution time: 19 [s]

▪ Dual-core execution time: 12 [s]

▪ Speedup: 1.58x

Core#1

7[s]

Core#2

5[s] 7[s]

EXECUTION TIME:
MULTIPLE TASKS CASE

Memory bus

Translation lookaside
buffer (TLB)

Fetch Decode Execute
Memory
access

Write-back

I1

I2

I3

Pipeline and speculation

Cache coherence

Memory
controller

Page table

HDD/SSD

DRAM memory banksSense amplifiers

Core#1

Core#2

L1 Cache

L1 Cache

L2 Cache

Fetch Decode Execute
Memory
access

Write-back

I1

I2

I3

Pipeline and speculation

Cache replacement policy

Tasks scheduling

QUALITY
DRIVERS FOR

ADOPTING
MULTICORES:

SET#3

▪ Core affinity

▪ Scheduling policy

▪ Interrupts

SCHEDULING
ON

MULTICORE
PROCESSORS

▪ Definitions [5]:

▪ A valid schedule is said to be feasible if it

satisfies the temporal constraints of every job.

▪ A job set is said to be schedulable by a

scheduling algorithm if that algorithm always

produces a valid schedule for that problem

▪ A scheduling algorithm is optimal if it always

produces a feasible schedule when one exists

▪ Utilisation Ui of a task Ti: The ratio between

execution time (Ci) of a task and a period of time

Pi: 𝑈𝑖 =
𝐶𝑖

𝑃𝑖

▪ Utilisation for the system: U=σ𝑖 𝑈𝑖< m; m –

number of cores

SCHEDULING
ON

MULTICORE
PROCESSORS

• Utilisation

• For m resources (cores) and n tasks, how to

schedule tasks so to avoid underutilisation of

resources? How to avoid idle resources? (without

using static scheduling), while at the same time

• Minimise pre-emption

• Minimise spinning

• Deadlines

• No optimal on-line scheduler can exist for a set of

jobs with two or more distinct deadlines on any

(𝑚 > 1) multiprocessor system. Theorem [Hong,

Leung: RTSS 1988, IEEE TCO 1992]

EXECUTION
TIME:

MULTIPLE
TASKS CASE

Core#1

7[s]

Core#2

5[s] 7[s]

Time

7[s]

5[s] 7[s]

Too late to decide about
scheduling...

EXECUTION
TIME:

MULTIPLE
THREADS CASE

▪ Single core execution time: 19 [s]

▪ Dual-core execution time: 9.5 [s]

▪ Speedup: 2x (ideally, but not really)

Core#1

7[s]

Core#2

5[s]2.5[s] 4.5[s]

CONCURRENCY
BUG EXAMPLE

thread1

thread2

R(S)

CPU
CORE 1:
thread1

CORE 2:
thread2

100+100

S

W(S)

R(S) 200-50 W(S)

thread1

thread2

R(S) W(S)

R(S) 100-50 W(S)

S 100 100 200 200 200 150

S 100 100 200 200 200 50

100+100

thread1

thread2

R(S) W(S)

S 100 100 200 200

100+100LOCK

LOCK WAIT

UNLOCK

R(S) 200-50 W(S)

200 150

QUALITY
DRIVERS FOR

ADOPTING
MULTICORES:

SET#4

▪ Ways and means to partition software -

partitioning strategy

▪ Thread start-up time

▪ Synchronisation

▪ Liveness

▪ Concurrency bugs

▪ Bugs that exist on execution paths possible only

because of concurrency

QUALITY PROPERTIES OF EMBEDDED SYSTEMS
RELATED TO MULTICORES

Set#1

Execution time

Redundancy
(availability, reliability)

Power consumption

Set#2

Average execution
time

User experience

Real-time constraints

Safety-critical

Do not compromise
execution correctness

Set#3

Core affinity

Scheduling policy

Interrupts

Set#4

Ways and means to
partition software -
partitioning strategy

Thread start-up time

Synchronisation

Liveness

Concurrency bugs

Bugs that exist on
execution paths
possible only because
of concurrency

COMPUTER
ARCHITECTURE
IMPROVEMENTS

• CPU performance (time):
𝐼𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 𝑐𝑜𝑢𝑛𝑡 ∗𝐶𝑃𝐼

𝐶𝑙𝑜𝑐𝑘 𝑟𝑎𝑡𝑒

• Instruction count

• CPI - cycles per instruction

• Clock rate

• Focus on architectural improvements and how to use the

larger number of transistors without being reliant on

silicon performance improvements

• Instruction set (e.g., RISC-V)

• Instruction-level parallelism - Pipelining

• Data-level parallelism

• Prediction (e.g., branch prediction)

A
MULTITHREADED

PROCESS

Process p

Stack
pointer

BSS & DATA
(static

variables)
Text

Allocated Heap

Process p

Thread 1

T1:Stack
pointer

BSS & DATA (static variables)

Text

Allocated Heap

Thread 2 Thread n

„…each thread runs independently of the others, and each thread may run a different sequence of

instructions.“, C++ Concurrency in action, practical multithreading, Anthony Williams, 2012

FREE LUNCH

ID 001 Status

Name … Owner

Quality Average case execution time – single task – no

partitioning

Stakeholders

Quantification

Environment Single task is executing on a CPU Execution time = t

Stimulus Migrate to a new hardware (CPU) generation

platform

#cores, CPU architecture

improvements, CPU frequency,

memory (size, speed,

hierarchy)

Response Significantly reduced (by factor k) execution time Execution time = t/k

FREE LUNCH

Driver#001

#cores – irrelevant –
k1=0

CPU architecture
improvements - k2

CPU frequency – k3 ~ 0 Memory – k4

Execution time = t/k
k=k1+k2+k3+k4

FREE LUNCH

ID 001 Status

Name … Owner

Quality Average case execution time – single task – no

new tasks - no partitioning

Stakeholders

Quantification

Environment Single task is executing on a CPU Execution time = t

Stimulus Migrate to a new hardware (CPU) generation

platform

#cores, CPU architecture

improvements, CPU frequency,

memory (size, speed,

hierarchy)

Response Significantly reduced (by factor k) execution time Execution time = t/k

THROUGHPUT AND
USER EXPERIENCE

ID 002 Status

Name … Owner

Quality Average case execution time – multiple tasks – no

new tasks - no partitioning

Stakeholders

Quantification

Environment Multiple tasks are executing on a CPU Execution time = t

Stimulus Migrate to a new hardware (CPU) generation

platform

#cores, CPU architecture

improvements, CPU frequency,

memory (size, speed,

hierarchy), set#3 params

Response Significantly reduced (by factor k) execution time Execution time = t/k

Set#3

Core affinity

Scheduling policy

Interrupts

THROUGHPUT AND
NEW FEATURES

ID 003 Status

Name … Owner

Quality Average case execution time – multiple tasks –

new tasks – no partitioning

Stakeholders

Quantification

Environment Multiple tasks are executing on a CPU Execution time = t

Stimulus Add new features/new tasks and reconfigure the

system

#features (and their

requirements), set#3 params

Response System runs with the new features, and with a

new execution time that is acceptable

#newFeatures, new execution

time

Set#3

Core affinity

Scheduling policy

Interrupts

THROUGHPUT AND
RE-
CONFIGURATION

ID 004 Status

Name … Owner

Quality Average case execution time – multiple tasks – no

new tasks - no partitioning

Stakeholders

Quantification

Environment Multiple tasks are executing on a multicore CPU Execution time = t; #cores > 1

Stimulus Configure set#3 parameters set#3 params

Response Significantly reduced (by factor k) execution time Execution time = t/k

Set#3

Core affinity

Scheduling policy

Interrupts

SPEEDUP OF A
SINGLE TASK

ID 005 Status

Name … Owner

Quality Average case execution time – single task –

partitioning – no dependencies

Stakeholders

Quantification

Environment Task is executing on a CPU Execution time = t; #cores>1

Stimulus Partition the task into threads #treads>1, set#3 params, set#4

params (partitioning strategy,

thread start-up time)

Response Significantly reduced (by factor k) execution time Execution time = t/k

Set#3

Core affinity

Scheduling policy

Interrupts

Set#4

Ways and means to partition software -
partitioning strategy

Thread start-up time

Synchronisation

Liveness

Concurrency bugs

Bugs that exist on execution paths possible
only because of concurrency

SPEEDUP OF A
SINGLE TASK

ID 006 Status

Name … Owner

Quality Average case execution time – single task –

partitioning – dependencies, shared memory

Stakeholders

Quantification

Environment Task is executing on a CPU Execution time = t; #cores>1

Stimulus Partition the task into threads #treads>1, set#4 params, set#3

params

Response Significantly reduced (by factor k) execution time Execution time = t/k

Set#3

Core affinity

Scheduling policy

Interrupts

Set#4

Ways and means to partition software -
partitioning strategy

Thread start-up time

Synchronisation

Liveness

Concurrency bugs

Bugs that exist on execution paths possible
only because of concurrency

SOFTWARE
PARTITIONING -

MULTITHREADING

▪ What else is affected by partitioning software

tasks into threads?

▪ Part 2: Synchronization in Concurrent Software is

an Architectural Decision

WHAT ABOUT
WORST CASE
EXECUTION

TIME?

▪ We can try and limit concurrency (set#3

parameters)

▪ In general, more cores and more tasks makes it

harder to predict WCET – increase hardware

interference

▪ Optimal scheduling in multicores

▪ Some theoretical concepts – hard to implement [5]

(RTOS not ready)

▪ Use multicores to decrease WCET?

▪ Not (always) a good idea [5]

Set#3

Core affinity

Scheduling policy

Interrupts

SOME APPROACHES
FOR PREDICTING
EXECUTION TIME

▪ Usually WCET

▪ Precision Timed (PRET)

Machines -

ptolemy.berkeley.edu/proj

ects/chess/pret/

▪ aiT WCET Analyzers -

www.absint.com/ait

▪ Binary executables

▪ Intrinsic cache and

pipeline behavior

▪ Timing Behavior of

AUTOSAR Multi-Core ECUs

- www.timing-

architects.com/

BB1

BB2

BB3

BB4

BB5

BB6

BB7

Memory bus

Translation lookaside
buffer (TLB)

Fetch Decode Execute
Memory
access

Write-back

I1

I2

I3

Pipeline and speculation

Cache coherence

Memory
controller

Page table

HDD/SSD

DRAM memory banksSense amplifiers

Core#1

Core#2

L1 Cache

L1 Cache

L2 Cache

Fetch Decode Execute
Memory
access

Write-back

I1

I2

I3

Pipeline and speculation

Cache replacement policy

Tasks scheduling

https://ptolemy.berkeley.edu/projects/chess/pret/

SIMULATORS

• SystemC

▪ Memory (e.g., DRAMSys: Tool for

Optimizing Memory Systems through

Simulation Analyses -

https://www.iese.fraunhofer.de/en/innovat

ion_trends/autonomous-

systems/memtonomy/DRAMSys.html)

• The Sniper Multi-Core Simulator -

https://snipersim.org//w/The_Sniper_Mult

i-Core_Simulator

• gem5 - https://www.gem5.org/

https://www.iese.fraunhofer.de/en/innovation_trends/autonomous-systems/memtonomy/DRAMSys.html
https://snipersim.org/w/The_Sniper_Multi-Core_Simulator
https://www.gem5.org/

ARCHITECTURE
MODELLING

▪ Model hardware – level depends on

prediction needs

▪ Transistors

▪ Memory (cache, DRAM, cache policy)

▪ Processor (pipelining, temperature,

number of cores, frequency)

▪ Static code analysis

▪ Dynamic monitoring

▪ Perform analysis on models

AMALTHEA • Open source tool platform for engineering embedded

multi- and many-core software systems

• http://www.amalthea-project.org/

ARCHITECTURAL
VIEWS FOR

CONCURRENCY
AND PARALLELISM

• Process View - ”4+1”view,

P. B. Kruchten, “The 4+ 1

view model of

architecture,” IEEE

software, vol. 12, no. 6, pp.

42–50, 1995

• Concurrency View, N.

Rozanski and E. Woods,

Software systems

architecture: working with

stakeholders using

viewpoints and

perspectives, 2nd ed.

Upper Saddle River, NJ:

Addison-Wesley, 2012.

https://www.viewpoints-and-

perspectives.info/vpandp/wp-

content/themes/secondedition/doc

/spa191-viewpoints-and-

perspectives.pdf

ARCHITECTURAL
VIEWS FOR

MULTITHREADED
PROGRAMS - A

FRAMEWORK FOR
AUTOMATIC

EXTRACTION OF
CONCURRENCY-

RELATED
ARCHITECTURAL

PROPERTIES
FROM SOFTWARE

https://mpourjafarian.github.io/ArchViMP.github.io/

MANUAL VS
AUTOMATIC
PARALLELISATION

▪ "Virtually every C++ application developed at

Google is multithreaded.", ThreadSanitizer – data

race detection in practice, K. Serebryany, T.

Iskhodzhanov, Workshop on Binary

Instrumentation and Applications, 2009

▪ OpenMP

▪ An Implementation of LLVM Pass for Loop

Parallelization Based on IR-Level Directives, K.

Jingu et al., 2018

▪ Hydra - https://github.com/jamro1149/Hydra

▪ Janus - https://github.com/CompArchCam/Janus

▪ SLX C/C++ -

https://www.silexica.com/products/slx-c/

https://github.com/CompArchCam/Janus
https://www.silexica.com/products/slx-c/

IS CONCURRENT
PROCESSING ON
MULTICORES THE
ANSWER TO OUR
TROUBLES?

Implementation Running time (s) Absolute speedup Relative speedup

1 Python 25 552.48 (~7 hours) 1 -

2 Java 2 372.68 11 10.8

3 C 542.67 47 4.4

4 Parallel loops 69.80 366 7.8

5 Parallel divide and conquer 3.80 6727 18.4

6 plus vectorization 1.10 23 224 3.5

7 plus AVX intrinsics 0.41 62 806 2.7

There’s plenty of room at the Top: What will drive computer performance after Moore’s law? E. Leiserson et

all, Science 05 Jun 2020: Vol. 368, Issue 6495, DOI: 10.1126/science.aam9744

Speedups from performance engineering a program that multiplies two

4096-by-4096 matrices. “Absolute speedup” is time relative to Python, and

“relative speedup,” which we show with an additional digit of precision, is

time relative to the preceding line.

(4) parallelizing the code to run on all 18 of the processing cores, (5)

exploiting the processor’s memory hierarchy, (6) vectorizing the code, and

(7) using Intel’s special Advanced Vector Extensions (AVX) instructions.

HETEROGENEOUS
ARCHITECTURES ▪ Moore’s law is still alive

▪ More transistors on the same surface

▪ More cores

▪ Increase in power consumption and heat

dissipation (without frequency increases)

▪ Not all cores can be powered at the same time

▪ Dark silicon

#2

#6

#10

#14

#12

#16

#4

#8

#1

#5

#9

#13

#3

#7

#11

#15

HETEROGENEOUS
ARCHITECTURES

▪ Turning a problem into an opportunity

▪ Silicon area is cheaper relative to power

▪ Spend area to buy power

▪ Right core for the right task: Performance and

Efficiency

▪ Missing piece: Software for heterogeneous

▪ Do we need to break HW-SW abstraction?

#2#1

#8

#3

#4

#6

#5

#7

#9

#10 #11

Unity in Diversity: Co-operative

Embedded Heterogeneous Computing,

Keynote, Tulika Mitra, SAMOS 2018

Some programming models offer an

abstraction layer for working with

heterogeneous hardware (e.g., SYCL).

CONCLUSIONS ▪ Few drivers (set#1)

▪ Complex follow-up requirements (set#2,3,4)

▪ What is important and what is not

▪ Scale and use case matter

▪ It is hard to make proper architectural decisions

▪ And…once you get the design right – you still

need to develop and test it properly (part 2) –

and optimize it for heterogeneous accelerators

(part 3).

AGENDA

Session 1: Fundamental Issues with
Concurrency in Embedded Software
Systems from Architectural Point of View

Session 2: Synchronization in
Concurrent Software is an Architectural
Decision; SYCL open standard

Session 3: Harnessing performance
portability in heterogeneous
architectures using C++ and SYCL

15:00

16:15

15:15

14:00

16:30

17:30

	Slide 1: Handling Concurrency in Heterogeneous Embedded Software Systems from Architectural Point of View: part 1
	Slide 2: AGENDA
	Slide 3: AGENDA
	Slide 4: Session 1
	Slide 5: Literature
	Slide 6: Moore’s law and Dennard Scaling
	Slide 7: Moore’s law and Dennard Scaling
	Slide 8: Software System architecture
	Slide 9: Software System architecture
	Slide 10: Specification of architecture drivers
	Slide 11: Software Quality
	Slide 12: Quality drivers
	Slide 13: quality drivers for adopting multicores: set#1
	Slide 14: Execution time: ideal quality driver expectations
	Slide 15: Theoretical limitations of performance gains [4]
	Slide 16: Theoretical limitations of performance gains
	Slide 17: Amdahl’s law
	Slide 18: Gustafson’s law
	Slide 19: Amdahl’s vs Gustafson Assumptions
	Slide 20: Execution time: ideal quality driver expectations
	Slide 21: Execution time
	Slide 22: Software in embedded systems
	Slide 24: What could possibly go wrong?
	Slide 25: quality drivers for adopting multicores: set#2
	Slide 26: Quality properties of embedded systems related to multicores
	Slide 27: Execution time: Simple case
	Slide 28: Execution time: Simple case
	Slide 29: Challenge: Execution time
	Slide 30: Memory access
	Slide 31: System functions
	Slide 32: Execution time: Multiple tasks case
	Slide 33: Execution time: Multiple tasks case
	Slide 34: WCET of tasks on Multicores
	Slide 35: Yun, Heechul. “Evaluating the Isolation Effect of Cache Partitioning on COTS Multicore Platforms.” (2015).
	Slide 36: Execution time: Multiple tasks case
	Slide 37: Execution time: Multiple tasks case
	Slide 38: Execution time: Multiple tasks case
	Slide 39: quality drivers for adopting multicores: set#3
	Slide 40: Scheduling on multicore processors
	Slide 41: Scheduling on multicore processors
	Slide 42: Execution time: Multiple tasks case
	Slide 43: Execution time: Multiple threads case
	Slide 44: Concurrency bug example
	Slide 45: quality drivers for adopting multicores: set#4
	Slide 46: Quality properties of embedded systems related to multicores
	Slide 47: Computer architecture improvements
	Slide 48: A multithreaded process
	Slide 49: Free lunch
	Slide 50: Free lunch
	Slide 51: Free lunch
	Slide 52: Throughput and user experience
	Slide 53: Throughput and new features
	Slide 54: Throughput and re-configuration
	Slide 55: Speedup of a single task
	Slide 56: Speedup of a single task
	Slide 57: Software partitioning - multithreading
	Slide 58: What about worst case execution time?
	Slide 59: Some approaches for predicting Execution time
	Slide 60: simulators
	Slide 61: Architecture modelling
	Slide 62: Amalthea
	Slide 63: Architectural views for concurrency and parallelism
	Slide 64: Architectural Views for Multithreaded Programs - a Framework for Automatic Extraction of Concurrency-related Architectural Properties from Software
	Slide 65: Manual vs automatic parallelisation
	Slide 66: Is concurrent processing on multicores the answer to our troubles?
	Slide 67: Heterogeneous architectures
	Slide 68: Heterogeneous architectures
	Slide 69: Conclusions
	Slide 70: AGENDA

