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SESSION 1

Introduction to the topic

Understand the basics of software system 
architecture

Understand the basics of computing laws 
and how they relate to architecture topic

Understand important architectural 
properties of embedded systems affected 
by introducing concurrency

14:00

15:00
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MOORE’S LAW 
AND DENNARD 

SCALING

https://github.com/karlrupp/microprocessor-trend-data



MOORE’S LAW 
AND DENNARD 

SCALING

• Free lunch: Every new generation of processors would 

execute with higher frequency – software execution 

becomes automatically faster – is over! [1]

• Post Dennard scaling breakdown performance drivers:

• Computer architecture improvements

• Concurrency and parallelism (forced to use multicores)

• Power consumption

• Drivers for using multicores

• Improve execution time

• Improve throughput

• Redundancy (availability, reliability)

• Power consumption

• Without compromising other system quality properties

Athlon 64 X2, 2007Pentium Dual-

Core, 2007



SOFTWARE 
SYSTEM 

ARCHITECTURE

• “Software architecture is the structure of the 

structures of the system, which comprise 

software components, the externally visible 

properties of those components, and the 

relationships among them.” [2]

• Requirements

• Drivers

• Decisions



SOFTWARE 
SYSTEM 

ARCHITECTURE

Requirements

Drivers

Design space 
exploration

Reasoning

Decision 
making



SPECIFICATION OF ARCHITECTURE DRIVERS

Business

Natural language

Links to documents

Increase sales by 
15%.

Increase a reputation.

A unique functionality.

Functionality

Use Cases

User Stories / Epics

Template scenario

User registration.

Web shop.

Constraints

Natural language

Use open source.

Use Android.

Do not use QR codes.

Quality

Template scenario

Performance, 
Maintainability, 
Extendibility, Safety, 
Security, Accessibility, 
Deplorability, 
Reliability, Scalability 



SOFTWARE 
QUALITY

▪ ISO 26262 - Road vehicles – Functional safety

▪ ISO/IEC 25010:2011 - systems and software 

quality requirements and evaluation

▪ ISO/IEC/IEEE 12207 - systems and software 

engineering - software life cycle processes

▪ IEEE 730 - software quality assurance

▪ IEEE 1012 - verification and validation (V&V)

Functional suitability Performance efficiency Compatibility Usability

Functional completeness Time behaviour Co-existence Appropriateness 

recognizability

Functional correctness Resource utilization Interoperability Learnability

Functional appropriateness Capacity Operability

…



QUALITY 
DRIVERS

▪ Quantification of quality in a context

▪ Quality template [3]

ID Unique identifier Status

Name Name of scenario Owner

Quality Related quality attribute: exactly one attribute 

should be chosen.

Stakeholders

Quantification

Environment Context applying to this scenario. May describe 

both context and status of the system.

Stimulus The event or condition arising from this 

scenario.

Response The expected reaction of the system to the 

scenario event.



QUALITY 
DRIVERS FOR 

ADOPTING 
MULTICORES: 

SET#1

▪ Execution time 

▪ Redundancy (availability, reliability)

▪ Power consumption



EXECUTION TIME: 
IDEAL QUALITY 
DRIVER 
EXPECTATIONS

ID … Status

Name … Owner

Quality Execution time Stakeholders

Quantification

Environment Application software is executing on a 

single core CPU.

#cores = 1

Execution time = t

Stimulus Migrate to a double core CPU #cores = 2

Response Reduce execution time by half. Execution time = t/2



THEORETICAL 
LIMITATIONS OF 
PERFORMANCE 

GAINS [4]

▪ Some operations have to execute physically sequentially.

▪ “If … one decided to improve the performance by 

putting two processors side by side with shared memory, 

one would find approximately 2.2 times as much 

hardware. The additional two-tenths in hardware 

accomplish the crossbar switching for the sharing. The 

resulting performance achieved would be about 1.8. 

…the assumption … each processor utilizing half of the 

memories about half of the time. “, ILLIAC IV computer

▪ Gene M. Amdahl. 1967. Validity of the single processor 

approach to achieving large scale computing capabilities. 

In Proceedings of the April 18-20, 1967, spring joint 

computer conference (AFIPS '67 (Spring)). Association for 

Computing Machinery, New York, NY, USA, 483–485. 



THEORETICAL 
LIMITATIONS OF 
PERFORMANCE 

GAINS

▪ Some logical problems are hard or impractical to 

partition into parts that can execute concurrently.

▪ Amdahl’s law

▪ 𝑆𝑝𝑒𝑒𝑑𝑢𝑝 =
𝑆𝑒𝑞 (𝑡)

𝑃𝑎𝑟 (𝑡,𝑛)
=

𝑇𝑠+𝑇𝑝

𝑇𝑠+
𝑇𝑝
𝑛

; n – number of cores; T=1

▪
1

𝑇𝑠+
1−𝑇𝑠
𝑛

→(𝑇𝑠 = 𝑐𝑜𝑛𝑠𝑡.) → lim
𝑛→∞

1

𝑇𝑠+
𝑇𝑝
𝑛

≃
1

𝑇𝑠

▪ Assumptions: 

▪ Fixed-sized problem; Tp is independent of n.

▪ The slowest task’s part limits the speedup

Execution time T

T

Parallelizable Not parallelizable – sequential only



AMDAHL’S LAW

▪ Effect of Amdahl’s law on speedup as a fraction of clock 

cycle time in serial mode, John L. Hennessy and David A. 

Patterson. 2019. A new golden age for computer 

architecture. Commun. ACM 62, 2 (February 2019), 48–60. 

DOI:https://doi.org/10.1145/3282307

▪ “For example, when only 1% of the time is serial, the 

speedup for a 64-processor configuration is about 35. “



GUSTAFSON’S 
LAW

▪ 𝑇 = 𝑇𝑠 + 𝑇𝑝/n; 

▪ Assumptions:

▪ The problem scales with the number of available 

cores (NOT fixed-sized problem)

▪ Fixed execution time

▪ Increase in throughput

▪ John L. Gustafson. 1988. Reevaluating Amdahl's 

law. Commun. ACM 31, 5 (May 1988), 532–533



AMDAHL’S VS 
GUSTAFSON 

ASSUMPTIONS

𝐴𝑚𝑑𝑎ℎ𝑙′𝑠 𝑙𝑎𝑤

Gustafson’s 𝑙𝑎𝑤

B.H.H. Juurlink and C. H. Meenderinck. 

2012. Amdahl's law for predicting the 

future of multicores considered 

harmful. SIGARCH Comput. Archit. 

News 40, 2 (May 2012), 1–9. 

DOI:https://doi.org/10.1145/2234336.

2234338

SYCL offload devices are many-

threaded*



EXECUTION TIME: 
IDEAL QUALITY 
DRIVER 
EXPECTATIONS

ID … Status

Name … Owner

Quality Execution time Stakeholders

Quantification

Environment Application software is executing on a 

single core CPU.

#cores = 1

Execution time = t

Stimulus Migrate to a double core CPU #cores = 2

Response Reduce execution time by half. Execution time = t/2



EXECUTION TIME
▪ Parallelise a single task

▪ Increase throughput

Improve 

execution time

Average case 

execution time

Worst case execution 

time

Single task User experience Real-time constraints

Group of tasks User experience 

(New features)

Real-time constraints/ 

Freedom from interference

Time

Frequency of 
execution [app, 
execution path]

Best Case 
Execution Time

Worst Case 
Execution Time

Upper Bound



SOFTWARE IN 
EMBEDDED 
SYSTEMS

...7[s] ?
...

7[s] 5[s]
...

7[s] 5[s]



WHAT COULD 
POSSIBLY GO 

WRONG?

Supervised Testing of Embedded 

Concurrent Software, PhD thesis, 

Jasmin Jahic, 2020



QUALITY 
DRIVERS FOR 

ADOPTING 
MULTICORES: 

SET#2

▪ Average execution time

▪ User experience

▪ Real-time constraints

▪ Safety-critical

▪ Do not compromise execution correctness

Improve 

execution time

Average case 

execution time

Worst case execution 

time

Single task User experience Real-time constraints

Group of tasks New features Real-time constraints/ 

Freedom from interference



QUALITY 
PROPERTIES 

OF EMBEDDED 
SYSTEMS 

RELATED TO 
MULTICORES

Set#1
Execution time

Redundancy (availability, reliability)

Power consumption

Set#2

Average execution time

User experience

Real-time constraints

Safety-critical

Do not compromise execution correctness



EXECUTION 
TIME: SIMPLE 

CASE

Core#1



EXECUTION 
TIME: SIMPLE 

CASE
Core#1

Core#1

L1 Cache L2 Cache

Memory bus

Translation lookaside 
buffer (TLB)

Fetch Decode Execute
Memory 
access

Write-back

I1

I2

I3

Pipeline and speculation

Cache replacement policy

Memory 
controller

Page table

HDD/SSD

DRAM memory banksSense amplifiers



CHALLENGE: 
EXECUTION 
TIME

▪ CPU:

▪ Pipelines

▪ Speculation

▪ Cache behaviour

▪ Cache pre-emption

▪ Memory hierarchy

▪ …

▪ Application software

▪ Execution path - Input

▪ Design and Analysis of Time-Critical Systems, Jan 

Reineke, Saarland University, Germany, Summer 

School ACACES 2017



MEMORY 
ACCESS

Computer architecture : a quantitative approach / John L. Hennessy, David A. Patterson. 

5th edition, 2011

Patterson, D.A. & Hennessy, J.L. (2017). Computer organization and design: The 

hardware/software interface RISC-V edition



SYSTEM 
FUNCTIONS

https://www.absint.com/ait/gallery.htm#shot5



EXECUTION 
TIME: 

MULTIPLE 
TASKS CASE

▪ Single core execution time: 12 [s]

▪ Dual-core execution time: 7 [s]

▪ Speedup: 1.71x

Core#1 Core#2

7[s] 5[s]



EXECUTION TIME: 
MULTIPLE TASKS CASE

Memory bus

Translation lookaside 
buffer (TLB)

Fetch Decode Execute
Memory 
access

Write-back

I1

I2

I3

Pipeline and speculation

Cache coherence

Memory 
controller

Page table

HDD/SSD

DRAM memory banksSense amplifiers

Core#1

Core#2

L1 Cache

L1 Cache

L2 Cache

Fetch Decode Execute
Memory 
access

Write-back

I1

I2

I3

Pipeline and speculation

Cache replacement policy



WCET OF 
TASKS ON 

MULTICORES

▪ “The WCET of even the simplest single-path 

program running alone on a CPU does not stay the 

same when other programs run on other CPUs” [5]

Fr
eq

u
en

cy

Execution time

Single task execution time

PROARTIS: PRObabilistic

Analyzable Real Time 

Systems -

www.rapitasystems.com/ab

out/research-

projects/proartis-

probabilistic-analyzable-

real-time-systems



YUN, HEECHUL. 
“EVALUATING THE 
ISOLATION EFFECT 

OF CACHE 
PARTITIONING ON 
COTS MULTICORE 

PLATFORMS.” 
(2015).

• Intel Nehalem

• Experiments: worst-case scenarios where a task’s 

execution time suffers the most slowdown due to 

cache interference

• Cache sharing can cause unacceptably high 

interference; the task’s execution time is 

increased by 103 times due to co-runners on 

different cores

*Some concurrency models take complete control of the accelerator for a given parallel task. In this case, it 

might be easier to reason about and control the worst-case-execution-time (subject to interaction with its 

environment)



EXECUTION 
TIME: 

MULTIPLE 
TASKS CASE

▪ New task 3: 7 [s]

Core#1 Core#2

7[s] 5[s]



EXECUTION 
TIME: 

MULTIPLE 
TASKS CASE

▪ Single core execution time: 19 [s]

▪ Dual-core execution time: 12 [s]

▪ Speedup: 1.58x

Core#1

7[s]

Core#2

5[s] 7[s]



EXECUTION TIME: 
MULTIPLE TASKS CASE

Memory bus

Translation lookaside 
buffer (TLB)

Fetch Decode Execute
Memory 
access

Write-back

I1

I2

I3

Pipeline and speculation

Cache coherence

Memory 
controller

Page table

HDD/SSD

DRAM memory banksSense amplifiers

Core#1

Core#2

L1 Cache

L1 Cache

L2 Cache

Fetch Decode Execute
Memory 
access

Write-back

I1

I2

I3

Pipeline and speculation

Cache replacement policy

Tasks scheduling



QUALITY 
DRIVERS FOR 

ADOPTING 
MULTICORES: 

SET#3

▪ Core affinity

▪ Scheduling policy 

▪ Interrupts



SCHEDULING 
ON 

MULTICORE 
PROCESSORS

▪ Definitions [5]:

▪ A valid schedule is said to be feasible if it 

satisfies the temporal constraints of every job.

▪ A job set is said to be schedulable by a 

scheduling algorithm if that algorithm always 

produces a valid schedule for that problem

▪ A scheduling algorithm is optimal if it always 

produces a feasible schedule when one exists

▪ Utilisation Ui of a task Ti: The ratio between 

execution time (Ci) of a task and a period of time 

Pi: 𝑈𝑖 =
𝐶𝑖

𝑃𝑖

▪ Utilisation for the system: U=σ𝑖 𝑈𝑖< m; m –

number of cores



SCHEDULING 
ON 

MULTICORE 
PROCESSORS

• Utilisation

• For m resources (cores) and n tasks, how to 

schedule tasks so to avoid underutilisation of 

resources? How to avoid idle resources? (without 

using static scheduling), while at the same time

• Minimise pre-emption

• Minimise spinning

• Deadlines

• No optimal on-line scheduler can exist for a set of 

jobs with two or more distinct deadlines on any 

(𝑚 > 1) multiprocessor system. Theorem [Hong, 

Leung: RTSS 1988, IEEE TCO 1992]



EXECUTION 
TIME: 

MULTIPLE 
TASKS CASE

Core#1

7[s]

Core#2

5[s] 7[s]

Time

7[s]

5[s] 7[s]

Too late to decide about 
scheduling...



EXECUTION 
TIME: 

MULTIPLE 
THREADS CASE

▪ Single core execution time: 19 [s]

▪ Dual-core execution time: 9.5 [s]

▪ Speedup: 2x (ideally, but not really)

Core#1

7[s]

Core#2

5[s]2.5[s] 4.5[s]



CONCURRENCY 
BUG EXAMPLE

thread1

thread2

R(S)

CPU
CORE 1: 
thread1

CORE 2: 
thread2

100+100

S

W(S)

R(S) 200-50 W(S)

thread1

thread2

R(S) W(S)

R(S) 100-50 W(S)

S 100 100 200 200 200 150

S 100 100 200 200 200 50

100+100

thread1

thread2

R(S) W(S)

S 100 100 200 200

100+100LOCK

LOCK WAIT

UNLOCK

R(S) 200-50 W(S)

200 150



QUALITY 
DRIVERS FOR 

ADOPTING 
MULTICORES: 

SET#4

▪ Ways and means to partition software -

partitioning strategy

▪ Thread start-up time

▪ Synchronisation

▪ Liveness 

▪ Concurrency bugs

▪ Bugs that exist on execution paths possible only 

because of concurrency



QUALITY PROPERTIES OF EMBEDDED SYSTEMS 
RELATED TO MULTICORES

Set#1

Execution time

Redundancy 
(availability, reliability)

Power consumption

Set#2

Average execution 
time

User experience

Real-time constraints

Safety-critical

Do not compromise 
execution correctness

Set#3

Core affinity

Scheduling policy

Interrupts

Set#4

Ways and means to 
partition software -
partitioning strategy

Thread start-up time

Synchronisation

Liveness

Concurrency bugs

Bugs that exist on 
execution paths 
possible only because 
of concurrency



COMPUTER 
ARCHITECTURE 
IMPROVEMENTS

• CPU performance (time): 
𝐼𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 𝑐𝑜𝑢𝑛𝑡 ∗𝐶𝑃𝐼

𝐶𝑙𝑜𝑐𝑘 𝑟𝑎𝑡𝑒

• Instruction count

• CPI - cycles per instruction

• Clock rate

• Focus on architectural improvements and how to use the 

larger number of transistors without being reliant on 

silicon performance improvements

• Instruction set (e.g., RISC-V)

• Instruction-level parallelism - Pipelining

• Data-level parallelism

• Prediction (e.g., branch prediction)



A 
MULTITHREADED 

PROCESS

Process p

Stack 
pointer

BSS & DATA 
(static 

variables)
Text

Allocated Heap

Process p

Thread 1

T1:Stack 
pointer

BSS & DATA (static variables)

Text

Allocated Heap

Thread 2 Thread n

„…each thread runs independently of the others, and each thread may run a different sequence of 

instructions.“, C++ Concurrency in action, practical multithreading, Anthony Williams, 2012



FREE LUNCH

ID 001 Status

Name … Owner

Quality Average case execution time – single task – no 

partitioning

Stakeholders

Quantification

Environment Single task is executing on a CPU Execution time = t

Stimulus Migrate to a new hardware (CPU) generation 

platform

#cores, CPU architecture 

improvements, CPU frequency, 

memory (size, speed, 

hierarchy)

Response Significantly reduced (by factor k) execution time Execution time = t/k



FREE LUNCH

Driver#001

#cores – irrelevant – 
k1=0

CPU architecture 
improvements - k2

CPU frequency – k3 ~ 0 Memory – k4

Execution time = t/k
k=k1+k2+k3+k4



FREE LUNCH

ID 001 Status

Name … Owner

Quality Average case execution time – single task – no 

new tasks - no partitioning

Stakeholders

Quantification

Environment Single task is executing on a CPU Execution time = t

Stimulus Migrate to a new hardware (CPU) generation 

platform

#cores, CPU architecture 

improvements, CPU frequency, 

memory (size, speed, 

hierarchy)

Response Significantly reduced (by factor k) execution time Execution time = t/k



THROUGHPUT AND 
USER EXPERIENCE

ID 002 Status

Name … Owner

Quality Average case execution time – multiple tasks – no 

new tasks - no partitioning

Stakeholders

Quantification

Environment Multiple tasks are executing on a CPU Execution time = t

Stimulus Migrate to a new hardware (CPU) generation 

platform

#cores, CPU architecture 

improvements, CPU frequency, 

memory (size, speed, 

hierarchy), set#3 params

Response Significantly reduced (by factor k) execution time Execution time = t/k

Set#3

Core affinity

Scheduling policy

Interrupts



THROUGHPUT AND 
NEW FEATURES

ID 003 Status

Name … Owner

Quality Average case execution time – multiple tasks –

new tasks – no partitioning

Stakeholders

Quantification

Environment Multiple tasks are executing on a CPU Execution time = t

Stimulus Add new features/new tasks and reconfigure the 

system

#features (and their 

requirements), set#3 params

Response System runs with the new features, and with a 

new execution time that is acceptable

#newFeatures, new execution 

time

Set#3

Core affinity

Scheduling policy

Interrupts



THROUGHPUT AND 
RE-
CONFIGURATION

ID 004 Status

Name … Owner

Quality Average case execution time – multiple tasks – no 

new tasks - no partitioning

Stakeholders

Quantification

Environment Multiple tasks are executing on a multicore CPU Execution time = t; #cores > 1

Stimulus Configure set#3 parameters set#3 params

Response Significantly reduced (by factor k) execution time Execution time = t/k

Set#3

Core affinity

Scheduling policy

Interrupts



SPEEDUP OF A 
SINGLE TASK

ID 005 Status

Name … Owner

Quality Average case execution time – single task –

partitioning – no dependencies

Stakeholders

Quantification

Environment Task is executing on a CPU Execution time = t; #cores>1

Stimulus Partition the task into threads #treads>1, set#3 params, set#4 

params (partitioning strategy, 

thread start-up time)

Response Significantly reduced (by factor k) execution time Execution time = t/k

Set#3

Core affinity

Scheduling policy

Interrupts

Set#4

Ways and means to partition software -
partitioning strategy

Thread start-up time

Synchronisation

Liveness

Concurrency bugs

Bugs that exist on execution paths possible 
only because of concurrency



SPEEDUP OF A 
SINGLE TASK

ID 006 Status

Name … Owner

Quality Average case execution time – single task –

partitioning – dependencies, shared memory

Stakeholders

Quantification

Environment Task is executing on a CPU Execution time = t; #cores>1

Stimulus Partition the task into threads #treads>1, set#4 params, set#3

params

Response Significantly reduced (by factor k) execution time Execution time = t/k

Set#3

Core affinity

Scheduling policy

Interrupts

Set#4

Ways and means to partition software -
partitioning strategy

Thread start-up time

Synchronisation

Liveness

Concurrency bugs

Bugs that exist on execution paths possible 
only because of concurrency



SOFTWARE 
PARTITIONING -

MULTITHREADING

▪ What else is affected by partitioning software 

tasks into threads?

▪ Part 2: Synchronization in Concurrent Software is 

an Architectural Decision



WHAT ABOUT 
WORST CASE 
EXECUTION 

TIME?

▪ We can try and limit concurrency (set#3 

parameters)

▪ In general, more cores and more tasks makes it 

harder to predict WCET – increase hardware 

interference

▪ Optimal scheduling in multicores

▪ Some theoretical concepts – hard to implement [5] 

(RTOS not ready)

▪ Use multicores to decrease WCET?

▪ Not (always) a good idea [5]

Set#3

Core affinity

Scheduling policy

Interrupts



SOME APPROACHES 
FOR PREDICTING 
EXECUTION TIME

▪ Usually WCET

▪ Precision Timed (PRET) 

Machines -

ptolemy.berkeley.edu/proj

ects/chess/pret/

▪ aiT WCET Analyzers -

www.absint.com/ait

▪ Binary executables

▪ Intrinsic cache and 

pipeline behavior

▪ Timing Behavior of 

AUTOSAR Multi-Core ECUs 

- www.timing-

architects.com/

BB1

BB2

BB3

BB4

BB5

BB6

BB7

Memory bus

Translation lookaside 
buffer (TLB)

Fetch Decode Execute
Memory 
access

Write-back

I1

I2

I3

Pipeline and speculation

Cache coherence

Memory 
controller

Page table

HDD/SSD

DRAM memory banksSense amplifiers

Core#1

Core#2

L1 Cache

L1 Cache

L2 Cache

Fetch Decode Execute
Memory 
access

Write-back

I1

I2

I3

Pipeline and speculation

Cache replacement policy

Tasks scheduling

https://ptolemy.berkeley.edu/projects/chess/pret/


SIMULATORS

• SystemC

▪ Memory (e.g., DRAMSys: Tool for 

Optimizing Memory Systems through 

Simulation Analyses -

https://www.iese.fraunhofer.de/en/innovat

ion_trends/autonomous-

systems/memtonomy/DRAMSys.html)

• The Sniper Multi-Core Simulator -

https://snipersim.org//w/The_Sniper_Mult

i-Core_Simulator

• gem5 - https://www.gem5.org/

https://www.iese.fraunhofer.de/en/innovation_trends/autonomous-systems/memtonomy/DRAMSys.html
https://snipersim.org/w/The_Sniper_Multi-Core_Simulator
https://www.gem5.org/


ARCHITECTURE 
MODELLING

▪ Model hardware – level depends on 

prediction needs

▪ Transistors

▪ Memory (cache, DRAM, cache policy)

▪ Processor (pipelining, temperature, 

number of cores, frequency)

▪ Static code analysis

▪ Dynamic monitoring

▪ Perform analysis on models



AMALTHEA • Open source tool platform for engineering embedded 

multi- and many-core software systems

• http://www.amalthea-project.org/



ARCHITECTURAL 
VIEWS FOR 

CONCURRENCY 
AND PARALLELISM

• Process View - ”4+1”view, 

P. B. Kruchten, “The 4+ 1 

view model of 

architecture,” IEEE 

software, vol. 12, no. 6, pp. 

42–50, 1995

• Concurrency View, N. 

Rozanski and E. Woods, 

Software systems 

architecture: working with 

stakeholders using 

viewpoints and 

perspectives, 2nd ed. 

Upper Saddle River, NJ: 

Addison-Wesley, 2012.

https://www.viewpoints-and-

perspectives.info/vpandp/wp-

content/themes/secondedition/doc

/spa191-viewpoints-and-

perspectives.pdf



ARCHITECTURAL 
VIEWS FOR 

MULTITHREADED 
PROGRAMS - A 

FRAMEWORK FOR 
AUTOMATIC 

EXTRACTION OF 
CONCURRENCY-

RELATED 
ARCHITECTURAL 

PROPERTIES 
FROM SOFTWARE

https://mpourjafarian.github.io/ArchViMP.github.io/



MANUAL VS 
AUTOMATIC 
PARALLELISATION

▪ "Virtually every C++ application developed at 

Google is multithreaded.", ThreadSanitizer – data 

race detection in practice, K. Serebryany, T. 

Iskhodzhanov, Workshop on Binary 

Instrumentation and Applications,  2009

▪ OpenMP

▪ An Implementation of LLVM Pass for Loop 

Parallelization Based on IR-Level Directives, K. 

Jingu et al., 2018

▪ Hydra - https://github.com/jamro1149/Hydra

▪ Janus - https://github.com/CompArchCam/Janus

▪ SLX C/C++ -

https://www.silexica.com/products/slx-c/

https://github.com/CompArchCam/Janus
https://www.silexica.com/products/slx-c/


IS CONCURRENT 
PROCESSING ON 
MULTICORES THE 
ANSWER TO OUR 
TROUBLES?

Implementation Running time (s) Absolute speedup Relative speedup

1 Python 25 552.48 (~7 hours) 1 -

2 Java 2 372.68 11 10.8

3 C 542.67 47 4.4

4 Parallel loops 69.80 366 7.8

5 Parallel divide and conquer 3.80 6727 18.4

6 plus vectorization 1.10 23 224 3.5

7 plus AVX intrinsics 0.41 62 806 2.7

There’s plenty of room at the Top: What will drive computer performance after Moore’s law? E. Leiserson et 

all, Science  05 Jun 2020: Vol. 368, Issue 6495, DOI: 10.1126/science.aam9744

Speedups from performance engineering a program that multiplies two 

4096-by-4096 matrices. “Absolute speedup” is time relative to Python, and 

“relative speedup,” which we show with an additional digit of precision, is 

time relative to the preceding line.

(4) parallelizing the code to run on all 18 of the processing cores, (5) 

exploiting the processor’s memory hierarchy, (6) vectorizing the code, and 

(7) using Intel’s special Advanced Vector Extensions (AVX) instructions.



HETEROGENEOUS 
ARCHITECTURES ▪ Moore’s law is still alive

▪ More transistors on the same surface

▪ More cores

▪ Increase in power consumption and heat 

dissipation (without frequency increases)

▪ Not all cores can be powered at the same time

▪ Dark silicon

#2

#6

#10

#14

#12

#16

#4

#8

#1

#5

#9

#13

#3

#7

#11

#15



HETEROGENEOUS 
ARCHITECTURES

▪ Turning a problem into an opportunity

▪ Silicon area is cheaper relative to power

▪ Spend area to buy power

▪ Right core for the right task: Performance and 

Efficiency

▪ Missing piece: Software for heterogeneous

▪ Do we need to break HW-SW abstraction? 

#2#1

#8

#3

#4

#6

#5

#7

#9

#10 #11

Unity in Diversity: Co-operative 

Embedded Heterogeneous Computing, 

Keynote, Tulika Mitra, SAMOS 2018

Some programming models offer an 

abstraction layer for working with 

heterogeneous hardware (e.g., SYCL).



CONCLUSIONS ▪ Few drivers (set#1)

▪ Complex follow-up requirements (set#2,3,4)

▪ What is important and what is not

▪ Scale and use case matter

▪ It is hard to make proper architectural decisions

▪ And…once you get the design right – you still 

need to develop and test it properly (part 2) –

and optimize it for heterogeneous accelerators 

(part 3).



AGENDA

Session 1: Fundamental Issues with 
Concurrency in Embedded Software 
Systems from Architectural Point of View

Session 2: Synchronization in 
Concurrent Software is an Architectural 
Decision; SYCL open standard

Session 3: Harnessing performance 
portability in heterogeneous 
architectures using C++ and SYCL

15:00

16:15

15:15

14:00

16:30

17:30
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