
Copyright Codeplay Software Ltd 2023

ConcurrencyInES:

SYCL for Embedded
Joe Todd, Víctor Pérez

HiPEAC–Jan 16, 2023

Copyright Codeplay Software Ltd 20212

• Why SYCL for Embedded Systems?
• Concurrency Model
• Heterogeneous Memory Model
• Scheduling
• Synchronisation

• Intro to SYCL programming model

• A small SYCL application (Vector Addition)

• Case Studies
• Automotive
• Drones
• Medical Imaging

Overview

© 2023 Codeplay Software Ltd.3

• End of the Free Lunch implies heterogeneous hardware

• SYCL provides standardized C++ API for portable software
acceleration across different types of hardware

• SYCL code is single-source!

Why SYCL

© 2023 Codeplay Software Ltd.4

• Artificial Intelligence (AI) operations (training and inference)
are increasingly performed “at the Edge” by embedded
devices that are typically less powerful and have more
constraints/restrictions than HPC hardware
• Limited memory, processing power and energy consumption
• Specialized hardware (e.g. ASIC, DSP, FPGA etc; IoT devices)

• SYCL as an open standard with a growing open-source
software ecosystem enables reusing existing AI acceleration
written for HPC on a wide range of diverse embedded
platforms.

Why targeting SYCL to embedded platforms

© 2023 Codeplay Software Ltd.5

• Heterogeneous hardware
• GPU, CPU, FPGA, ASIC, custom silicon!

• Pure C++ code

• Well defined:
• Concurrency model

• Memory model

• Scheduling

• Performance Portability

What SYCL can do for you

© 2023 Codeplay Software Ltd.6

Concurrency Model

© 2023 Codeplay Software Ltd.7

Typical multi-core SYCL

• Several threads

• Homogeneous hardware

• Shared memory

• Thousands of threads

• Host & Accelerator(s)

• Separate memory spaces

• Host is in charge:
• Schedules kernels & data flow

• Accelerator does the work

• Queue per accelerator

Concurrency Model

© 2023 Codeplay Software Ltd.8

• Host & 1 or more accelerators
• Host can also use itself as an accelerator (e.g. via CPU OpenCL runtime)

• Work split into discrete kernels, submitted to device's queue

• SYCL provides both implicit & explicit task graph generation

Concurrency & Scheduling

© 2023 Codeplay Software Ltd.9

• Queues & events allow the SYCL runtime to handle
scheduling

• Host is free to:
• Get on with other work

• Schedule tasks on other devices

• Synthesise results

• host_task allows us to effectively write host callbacks in the
task graph

Scheduling

© 2023 Codeplay Software Ltd.10

Scheduling

SCHEDULING
ON

MULTICORE
PROCESSORS

• Utilisation

• For m resources (cores) and n tasks, how to

schedule tasks so to avoid underutilisation of

resources? How to avoid idle resources? (without

using static scheduling), while at the same time

• Minimise pre-emption

• Minimise spinning

• Deadlines

• No optimal on-line scheduler can exist for a set of

jobs with two or more distinct deadlines on any

(𝑚 > 1) multiprocessor system. Theorem [Hong,

Leung: RTSS 1988, IEEE TCO 1992]

© 2023 Codeplay Software Ltd.12

Memory Model

© 2023 Codeplay Software Ltd.13

• Heterogeneous systems have complex memory architecture

Memory Model

© 2023 Codeplay Software Ltd.14

Memory all over the place!

© 2023 Codeplay Software Ltd.15

• Heterogeneous systems have complex memory architecture

• SYCL makes sense of this by:

• Defining memory hierarchy (C++ doesn't know about this!)

Memory Model

© 2019 Codeplay Software Ltd.16

Processing
Element

1. A processing element executes a

single work-item

1

work-item

© 2019 Codeplay Software Ltd.17

Processing
Element

Private
memory

1. A processing element executes a

single work-item

2. Each work-item can access private

memory, a dedicated memory region

for each processing element
1

work-item

2

© 2019 Codeplay Software Ltd.18

Processing
Element

Private
memory

1. A processing element executes a

single work-item

2. Each work-item can access private

memory, a dedicated memory region

for each processing element

3. A compute unit executes a work-

group, composed of multiple work-

items, one for each processing

element in the compute unit

1

Compute unit

work-item work-group

2

3

© 2019 Codeplay Software Ltd.19

Private
memory

1. A processing element executes a

single work-item

2. Each work-item can access private

memory, a dedicated memory region

for each processing element

3. A compute unit executes a work-

group, composed of multiple work-

items, one for each processing

element in the compute unit

4. Each work-item can access local

memory, a dedicated memory region

for each compute unit

Local
memory

Compute unit

work-group

2

3

4
Processing

Element

1

work-item

© 2019 Codeplay Software Ltd.20

Private
memory

1. A processing element executes a

single work-item

2. Each work-item can access private

memory, a dedicated memory region

for each processing element

3. A compute unit executes a work-

group, composed of multiple work-

items, one for each processing

element in the compute unit

4. Each work-item can access local

memory, a dedicated memory region

for each compute unit

5. A device can execute multiple work-

groups

Local
memory

Compute unit

work-group

2

3

4

5

Processing
Element

1

work-item

© 2019 Codeplay Software Ltd.21

Processing
Element

Private
memory

1. A processing element executes a

single work-item

2. Each work-item can access private

memory, a dedicated memory region

for each processing element

3. A compute unit executes a work-

group, composed of multiple work-

items, one for each processing

element in the compute unit

4. Each work-item can access local

memory, a dedicated memory region

for each compute unit

5. A device can execute multiple work-

groups

6. Each work-item can access global

memory, a single memory region

available to all processing elements

1

Local
memory

Global memory

Compute unit

work-item work-group

2

3

4

6

5

© 2023 Codeplay Software Ltd.22

• Heterogeneous systems have complex memory architecture

• SYCL makes sense of this by:

• Defining memory hierarchy (C++ doesn't know about this!)

• Defining the accessibility of memory from different devices

Memory Model

© 2023 Codeplay Software Ltd.23

Memory all over the place!

© 2023 Codeplay Software Ltd.24

• Alternative to 'raw pointer' memory management

• Abstraction around data

• Keeps track of which kernels are using data

• Data migration & kernel scheduling handled automatically!

• No possibility of unsafe concurrent access by different kernels

Buffer/Accessor Model

© 2023 Codeplay Software Ltd.25

• Buffers
• owning memory container

• manage data migration and coherence across host and devices

• users can specify "properties" to inform the runtime of extra information

• Accessors
• give access to a buffer memory in a kernel

• express data dependency of kernels

Buffers & Accessors

© 2023 Codeplay Software Ltd.26

Buffers & Accessors

© 2023 Codeplay Software Ltd.27

Buffers & Accessors

© 2023 Codeplay Software Ltd.28

• Host-device synchronization
• Queues provide host-device synchronization

• Buffer destructor blocks until data safely back on host

• Thread-thread sync:
• Threads can wait on each other & read/write shared memory

• Hierarchical parallelism defines when this is possible

• SYCL defines synchronous & asynchronous exceptions
• & the ability to provide custom exception handlers

Communication & Synchronization

© 2023 Codeplay Software Ltd.29

• SYCL targets embedded through to exascale computing

• Avoid writing different code for variants of your embedded
system

• Hardware flexibility & future proofing

Performance Portability

© 2023 Codeplay Software Ltd.30

• Not all hardware supports all SYCL features

• How can we target these devices with SYCL?

• Using aspects:
• aspect::atomic64
• aspect::cpu
• aspect::host_debuggable

• And device_info:
• info::device::max_compute_units
• info::device::preferred_vector_width_int
• info::device::max_clock_frequency

Aspects & Info

© 2023 Codeplay Software Ltd.31

• General purpose computing increasingly resource limited
• Motivates the development of SYCL

• Good news for the embedded world!

• SYCL:
• defines a programming model for heterogeneous systems

• formalises multiple memory spaces/scopes

• provides powerful abstractions for data flow

SYCL for Embedded

© 2023 Codeplay Software Ltd.32

What is SYCL?

© 2023 Codeplay Software Ltd.33

• Learning objectives:
• Learn about the SYCL 2020 specification and its implementations

• Learn about the major features that SYCL provides

• Learn about the components of a SYCL implementation

• Learn about the anatomy of a typical SYCL application

• Learn where to find useful resources for SYCL

© 2023 Codeplay Software Ltd.34

SYCL is a single-source, high-level, standard C++ programming
model, that can target a range of heterogeneous platforms

© 2023 Codeplay Software Ltd.35

SYCL is a single-source, high-level, standard C++ programming
model, that can target a range of heterogeneous platforms

© 2023 Codeplay Software Ltd.36

SYCL is a single-source, high-level, standard C++ programming
model, that can target a range of heterogeneous platforms

Host compiler Device compiler

Applications

SYCL runtime

Backend (e.g., OpenCL)

SYCL template library

Device IR / ISA
(e.g., SPIR)

CPU executable (embedded device binary)

• SYCL allows you write
both host CPU and
device code in the
same C++ source file
• This is usually

implemented in two
compilation passes; one
for the host code and
one for the device code

© 2023 Codeplay Software Ltd.37

SYCL is a single-source, high-level, standard C++ programming
model, that can target a range of heterogeneous platforms

• SYCL provides high-
level abstractions
over common boiler-
plate code
• Platform/device

selection
• Buffer creation
• Kernel compilation
• Dependency

management and
scheduling

Typical OpenCL hello world application

Typical SYCL hello world application

© 2023 Codeplay Software Ltd.38

• SYCL allows you to
write standard C++
• No language extensions

• No pragmas

array_view<float> a, b, c;

extent<2> e(64, 64);

parallel_for_each(e, [=](index<2> idx) restrict(amp) {

c[idx] = a[idx] + b[idx];

});

cgh.parallel_for<class vec_add>(range, [=](sycl::id<2> idx) {

c[idx] = a[idx] + c[idx];

}));

SYCL is a single-source, high-level, standard C++ programming
model, that can target a range of heterogeneous platforms

std::vector<float> a, b, c;

#pragma parallel_for

for(int i = 0; i < a.size(); i++) {

c[i] = a[i] + b[i];

} __global__ vec_add(float *a, float *b, float *c) {

return c[i] = a[i] + b[i];

}

float *a, *b, *c;

vec_add<<<range>>>(a, b, c);

© 2023 Codeplay Software Ltd.39

SYCL is a single-source, high-level, standard C++ programming
model, that can target a range of heterogeneous platforms

GPU APUCPU FPGAAccelerator DSP

• SYCL can target any
device supported by
its backend

• SYCL can target a
number of different
backends

© 2023 Codeplay Software Ltd.40

Who is implementing SYCL?

© 2023 Codeplay Software Ltd.41

© 2023 Codeplay Software Ltd.42

© 2023 Codeplay Software Ltd.43

What is in a SYCL implementation?

© 2023 Codeplay Software Ltd.44

SYCL Runtime

SYCL interface

Backend interface (e.g. OpenCL API)

Data dependency
tracker

Runtime
Scheduler

Kernel
loader

SYCL device
compiler

© 2023 Codeplay Software Ltd.45

SYCL Runtime

SYCL interface

Backend interface (e.g., OpenCL API)

Data dependency
tracker

Runtime
Scheduler

Kernel
loader

SYCL device
compiler

• The SYCL interface is a C++ template library that users and
library developers program to
• The same interface is used for both the host and device code

© 2023 Codeplay Software Ltd.46

SYCL Runtime

SYCL interface

Backend interface (e.g., OpenCL API)

Data dependency
tracker

Runtime
Scheduler

Kernel
loader

SYCL device
compiler

• The SYCL runtime is a library that schedules and executes
work
• It loads kernels, tracks data dependencies and schedules commands

© 2023 Codeplay Software Ltd.47

SYCL Runtime

SYCL interface

Backend interface (e.g., OpenCL API)

Data dependency
tracker

Runtime
Scheduler

Kernel
loader

SYCL device
compiler

• The backend interface is where the SYCL runtime calls down into a
backend in order to execute on a particular device
• The standard backend is OpenCL but some implementations have supported others

© 2023 Codeplay Software Ltd.48

SYCL Runtime

SYCL interface

Backend interface (e.g., OpenCL API)

Data dependency
tracker

Runtime
Scheduler

Kernel
loader

SYCL device
compiler

• The SYCL device compiler is a C++ compiler which can identify
SYCL kernels and compile them down to an IR or ISA
• This can be SPIR, SPIR-V, GCN, PTX or any proprietary vendor ISA

© 2023 Codeplay Software Ltd.49

What does a SYCL application look like?

© 2023 Codeplay Software Ltd.50

int main(int argc, char *argv[]) {

}

© 2023 Codeplay Software Ltd.51

#include <sycl/sycl.hpp>

using namespace sycl;

int main(int argc, char *argv[]) {

}

First we include the SYCL header
which contains the runtime API

We also import the sycl
namespace here for the
purposes of presenting

© 2023 Codeplay Software Ltd.52

#include <sycl/sycl.hpp>

using namespace sycl;

int main(int argc, char *argv[]) {

queue q{default_selector_v};

}

Device selectors allow you to
choose a device based on a
custom configuration

The queue default constructor
uses the default_selector_v,
which allows the runtime to
select a device for you

Chosen device

FPGA

GPU
CPU

© 2023 Codeplay Software Ltd.53

#include <sycl/sycl.hpp>

using namespace sycl;

int main(int argc, char *argv[]) {

queue q{default_selector_v};

q.submit([&](handler &cgh){

});

}

With a queue we can submit a
command group

A command group contains:
● A SYCL command (e.g. a

SYCL kernel function)
● Execution range
● Accessors

Command Group

SYCL command

Accessors

Range

© 2023 Codeplay Software Ltd.54

#include <sycl/sycl.hpp>

using namespace sycl;

int main(int argc, char *argv[]) {

std::vector<float> dA{ … }, dB{ … }, dO{ … };

queue q{default_selector_v};

q.submit([&](handler &cgh){

});

}

We initialize three vectors, two
inputs and an output

© 2023 Codeplay Software Ltd.55

#include <sycl/sycl.hpp>

using namespace sycl;

int main(int argc, char *argv[]) {

std::vector<float> dA{ … }, dB{ … }, dO{ … };

queue q{default_selector_v};

buffer<float> bufA{dA};

buffer<float> bufB{dB};

buffer<float> bufO{dO};

q.submit([&](handler &cgh){

});

}

We create a buffer for each
vector to manage the data
across host and device

© 2023 Codeplay Software Ltd.56

#include <sycl/sycl.hpp>

using namespace sycl;

int main(int argc, char *argv[]) {

std::vector<float> dA{ … }, dB{ … }, dO{ … };

queue q{default_selector_v};

{

buffer<float> bufA{dA};

buffer<float> bufB{dB};

buffer<float> bufO{dO};

q.submit([&](handler &cgh){

});

}

}

Buffers synchronize on
destruction via RAII

So adding this scope means
that all kernels writing to the
buffers will be waited on and
the data will be copied back to
the vectors on leaving this
scope

© 2023 Codeplay Software Ltd.57

#include <sycl/sycl.hpp>

using namespace sycl;

int main(int argc, char *argv[]) {

std::vector<float> dA{ … }, dB{ … }, dO{ … };

queue q{default_selector_v};

{

buffer<float> bufA{dA};

buffer<float> bufB{dB};

buffer<float> bufO{dO};

q.submit([&](handler &cgh){

accessor inA{bufA, cgh, read_only};

accessor inB{bufB, cgh, read_only};

accessor out{bufO, cgh, write_only, no_init};

});

}

}

We create an accessor for each
of the buffers

Read access for the two input
buffers and write access for the
output buffer. An additional
property is passed to the
output accessor to specify that
the previous data will not be
used.

© 2023 Codeplay Software Ltd.58

#include <sycl/sycl.hpp>

using namespace sycl;

class add;

int main(int argc, char *argv[]) {

std::vector<float> dA{ … }, dB{ … }, dO{ … };

queue q{default_selector_v};

{

buffer<float> bufA{dA};

buffer<float> bufB{dB};

buffer<float> bufO{dO};

q.submit([&](handler &cgh){

accessor inA{bufA, cgh, read_only};

accessor inB{bufB, cgh, read_only};

accessor out{bufO, cgh, write_only, no_init};

cgh.parallel_for<add>(dA.size(),

[=](id<1> i) { out[i] = inA[i] + inB[i]; });

});

}

}

We define a SYCL kernel
function for the command
group using the parallel_for API

The first argument here is cast
to a range, specifying the
iteration space

The second argument is a
lambda function that
represents the entry point for
the SYCL kernel

This lambda takes an id
parameter that describes the
current iteration being
executed

© 2023 Codeplay Software Ltd.59

#include <sycl/sycl.hpp>

using namespace sycl;

class add;

int main(int argc, char *argv[]) {

std::vector<float> dA{ … }, dB{ … }, dO{ … };

queue q{default_selector_v};

{

buffer<float> bufA{dA};

buffer<float> bufB{dB};

buffer<float> bufO{dO};

q.submit([&](handler &cgh){

accessor inA{bufA, cgh, read_only};

accessor inB{bufB, cgh, read_only};

accessor out{bufO, cgh, write_only, no_init};

cgh.parallel_for<add>(dA.size(),

[=](id<1> i) { out[i] = inA[i] + inB[i]; });

});

}

}

The template parameter to
parallel_for is used to name the
lambda

The reason for this is that C++
does not have a standard ABI
for lambdas so they are
represented differently across
the host and device compiler

SYCL kernel functions follow
C++ ODR rules, which means
that if a SYCL kernel is in a
template context, the kernel
name needs to reflect that
context, so must contain the
same template arguments

© 2023 Codeplay Software Ltd.60

#include <sycl/sycl.hpp>

using namespace sycl;

class add;

int main(int argc, char *argv[]) {

std::vector<float> dA{ … }, dB{ … }, dO{ … };

try {

queue q{default_selector_v, async_handler{}};

{

buffer<float> bufA{dA};

buffer<float> bufB{dB};

buffer<float> bufO{dO};

q.submit([&](handler &cgh){

accessor inA{bufA, cgh, read_only};

accessor inB{bufB, cgh, read_only};

accessor out{bufO, cgh, write_only, no_init};

cgh.parallel_for<add>(dA.size(),

[=](id<1> i) { out[i] = inA[i] + inB[i]; });

});

}

q.throw_asynchronous();

} catch (...) { /* handle errors */ }

}

In SYCL errors are handled using
exception handling, so you
should always wrap SYCL code
in a try-catch block

Some exceptions are thrown
synchronously at the point of
using a SYCL API

Other exceptions are
asynchronous and are stored by
the runtime and passed to an
async handler when the queue
is told to throw

© 2023 Codeplay Software Ltd.61

Useful SYCL resources

© 2023 Codeplay Software Ltd.62

• The latest SYCL specification is SYCL 2020
• Available at:

• https://registry.khronos.org/SYCL/specs/sycl-2020/html/sycl-2020.html

• The specification is open source
• Github project: https://github.com/KhronosGroup/SYCL-Docs

© 2023 Codeplay Software Ltd.63

• There is a Khronos backed website for collecting SYCL related
news and articles
• Available at: http://sycl.tech/

© 2023 Codeplay Software Ltd.64

• There are Khronos produced SYCL 2020 reference cards
• Available at: https://www.khronos.org/files/sycl/sycl-2020-reference-guide.pdf

© 2023 Codeplay Software Ltd.65

• The free Data Parallel C++ book:
• Available at: https://link.springer.com/book/10.1007/978-1-4842-5574-2

© 2023 Codeplay Software Ltd.66

Embedded SYCL today

© 2023 Codeplay Software Ltd.67

• ComputeCPP/ComputeAorta
• Any CPU or CPU-like processor
• Renesas R-Car, IMG PowerVR, ARM Mali, Xilinx FPGA (embedded)
• Embedded platforms supporting OpenCL/SPIR/SPIR-V (ComputeAorta can provide this

support).
• Some undisclosed customer embedded platforms

• DPC++
• Emerging support for MLIR
• Huawei Ascent processor (for Autonomous Driving)

• TriSYCL
• Xilinx FPGAs (including embedded)

• Sylkan
• SYCL on top of Vulkan

SYCL Tools for Embedded

© 2023 Codeplay Software Ltd.68

• Automotive
• Autonomous driving & ADAS,

• sensor fusion (fusing lidar and radar data)

• battery management systems

• Autonomous Unmanned Arial Vehicles
• Improve automatic detection and avoidance capabilities of drones.

• Medical imaging
• E.g. skin cancer detection using mobile medical devices/instruments

Current SYCL Applications for Embedded

Copyright Codeplay Software Ltd 202169

© 2023 Codeplay Software Ltd.70

Copyright Codeplay Software Ltd 202171

• Renesas R-Car architecture
• Embedded automotive

platform
• Optimized for Computer

Vision and Machine
Learning
• Designed for

• Low latency

• Low power consumption

• Low cost

Technologies for Automated Driving

© 2023 Codeplay Software Ltd.72

Project to build novel High-Performance
Hybrid Batteries for Electric Vehicles

Collaboration led by Williams Advanced Engineering.

Codeplay’s role: Accelerating Battery Models run by
Battery Management System via SYCL.

Embedded MPSoC platform
running the BMS on the
Battery.

Experimental Battery Test rig
at Imperial.

Project consortium:

© 2023 Codeplay Software Ltd.73

• Quad Core Arm® Cortex™-
A53 processor.

• Dual Core Arm Cortex R5
real-time processors

• Arm Mali GPU 400

• FPGA

Zynq® UltraScale+™MPSoC ZCU106 Evaluation Kit.

Targets low-power embedded applications, e.g. Advanced driver-assistance
systems (ADAS), Battery Management Systems (BMS).

Software Acceleration – Integration Overview

Battery Model Architecture
maintained by WAE in

MatLab/Simulink format

Matlab/Simulink Coder C/C++

Prior to Integration

BMS Software
Architecture

Open Accelerated
SYCL Libraries Eigen

WIZer Coder

C/C++ with
SYCL bindings

With Integration

FPGA Support
via Xilinx
Vitis/XRT

Acceleration of SYCL code on:
* FPGA via Xilinx Vitis/XRT
* CPU via:

1) SYCL host device in
2) Native target in

Acceleration of Simulink/Matlab code via SYCL standard and open source libraries

© 2023 Codeplay Software Ltd.75

ComputeCPP performs Whole Function Vectorization + single_task
conversion (via ComputeAorta).

Best results with vector width of 32.

Impact of compiler optimizations on Matrix
Multiply running on Xilinx FPGA

© 2023 Codeplay Software Ltd.76

SYCL-BLAS General Matrix Multiplication running on
embedded Xilinx zcu106 board with FPGA

Copyright Codeplay Software Ltd 202177

• Autonomous UAVs for inspection of:
• Ports

• Bridges

• Other structures

• Collision avoidance is critical

• AI 'at the edge'

Unmanned Arial Vehicles (UAV)

Copyright Codeplay Software Ltd 202178

• Intelligent radar perception processed by embedded device

• Improves automatic detection and avoidance capabilities of
UAVs

• Collaboration with UWS, DataLab and Codeplay

• Uses deep learning models to perform classification tasks on
the drone

• Employs ONNX runtime to perform model operations
accelerated in SYCL

Unmanned Arial Vehicles (UAV)

Copyright Codeplay Software Ltd 202179

• Recently started collaboration with Napier University
Edinburgh

• Developing new advanced AI- powered Computer Vision
Algorithms for cancer diagnosis

• Enabling these algorithms to run on mobile medical
devices/instruments – enabling these devices to perform
more reliable image classification than SOTA.

• Employing SYCL/ComputeCPP to accelerate the new AI/Vision
algorithms running on these embedded devices.

Medical Imaging on embedded devices

© 2023 Codeplay Software Ltd.80

• Embedded GPU for spacecraft

• Benchmarking various kernels

• Ported to SYCL

GPUs for Space (GPU4S)

© 2023 Codeplay Software Ltd.81

• Applications in automotive, avionics, healthcare/medical, energy,
robotics and other industries require functional safety and
reliability guarantees – Application, tool chains and used APIs
need to be certified to certain SC standards.

• Impacts on SYCL as many of these are embedded applications

• Various SC initiatives for SYCL in progress:
• SYCL Safety-Critical Exploratory Forum https://www.khronos.org/syclsc

• Building on experience with existing SC specifications such as Vulkan SC

• Khronos and AUTOSAR collaborate on standardization in Automotive and Intelligent
Mobility

Safety-Critical requirements

https://www.khronos.org/syclsc

Copyright Codeplay Software Ltd 202182

• SYCL targeting embedded is becoming increasingly important to
provide a standards-based acceleration of artificial intelligence in
automotive, avionics, healthcare/medical, energy, robotics and
other industries

• Many embedded platforms already support SYCL (Arm, Xilinx, R-
Car, Huawei) with more being added frequently.

• Embedded platforms take advantage of the existing software
ecosystem (currently used by HPC).

• Applications in Automotive/ADAS
• Standardization of Safety-critical features in progress (Khronos +

AUTOSAR)

Wrap

@codeplaysoft codeplay.cominfo@codeplay.com

Thank you!

	Slide 1
	Slide 2: Overview
	Slide 3: Why SYCL
	Slide 4: Why targeting SYCL to embedded platforms
	Slide 5: What SYCL can do for you
	Slide 6: Concurrency Model
	Slide 7: Concurrency Model
	Slide 8: Concurrency & Scheduling
	Slide 9: Scheduling
	Slide 10: Scheduling
	Slide 11: Scheduling on multicore processors
	Slide 12: Memory Model
	Slide 13: Memory Model
	Slide 14: Memory all over the place!
	Slide 15: Memory Model
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22: Memory Model
	Slide 23: Memory all over the place!
	Slide 24: Buffer/Accessor Model
	Slide 25: Buffers & Accessors
	Slide 26: Buffers & Accessors
	Slide 27: Buffers & Accessors
	Slide 28: Communication & Synchronization
	Slide 29: Performance Portability
	Slide 30: Aspects & Info
	Slide 31: SYCL for Embedded
	Slide 32: What is SYCL?
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40: Who is implementing SYCL?
	Slide 41
	Slide 42
	Slide 43: What is in a SYCL implementation?
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49: What does a SYCL application look like?
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61: Useful SYCL resources
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66: Embedded SYCL today
	Slide 67: SYCL Tools for Embedded
	Slide 68: Current SYCL Applications for Embedded
	Slide 69
	Slide 70
	Slide 71: Technologies for Automated Driving
	Slide 72: Project to build novel High-Performance Hybrid Batteries for Electric Vehicles
	Slide 73: Zynq® UltraScale+™ MPSoC ZCU106 Evaluation Kit.
	Slide 74
	Slide 75: Impact of compiler optimizations on Matrix Multiply running on Xilinx FPGA
	Slide 76: SYCL-BLAS General Matrix Multiplication running on embedded Xilinx zcu106 board with FPGA
	Slide 77: Unmanned Arial Vehicles (UAV)
	Slide 78: Unmanned Arial Vehicles (UAV)
	Slide 79: Medical Imaging on embedded devices
	Slide 80: GPUs for Space (GPU4S)
	Slide 81: Safety-Critical requirements
	Slide 82: Wrap
	Slide 83: Thank you!

